Robotic lower limb prostheses have the power to revolutionize mobility by enhancing gait efficiency and facilitating movement. While several design approaches have been explored to create lightweight and energy-efficient devices, the potential of underactuation remains largely untapped in lower limb prosthetics. Taking inspiration from the natural harmony of walking, in this article, we have developed an innovative active transfemoral prosthesis. By incorporating underactuation, our design uses a single power actuator placed near the knee joint and connected to a differential mechanism to drive both the knee and ankle joints. We conduct comprehensive benchtop tests and evaluate the prosthesis with three individuals who have above-knee amputations, assessing its performance in walking, stair climbing, and transitions between sitting and standing. Our evaluation focuses on gathering position and torque data recorded from sensors integrated into the prosthesis and comparing these measurements to biomechanical data of able-bodied locomotion. Our findings highlight the promise of underactuation in advancing lower limb prosthetics and demonstrate the feasibility of our knee–ankle underactuated design in various tasks, showcasing its ability to replicate natural movement.

An Underactuated Active Transfemoral Prosthesis With Series Elastic Actuators Enables Multiple Locomotion Tasks

Fagioli I.
;
Lanotte F.;Fiumalbi T.;Baldoni A.;Mazzarini A.;Eken H.;Papapicco V.;Dalmiani S.;Trigili E.;Crea S.;Vitiello N.
2024-01-01

Abstract

Robotic lower limb prostheses have the power to revolutionize mobility by enhancing gait efficiency and facilitating movement. While several design approaches have been explored to create lightweight and energy-efficient devices, the potential of underactuation remains largely untapped in lower limb prosthetics. Taking inspiration from the natural harmony of walking, in this article, we have developed an innovative active transfemoral prosthesis. By incorporating underactuation, our design uses a single power actuator placed near the knee joint and connected to a differential mechanism to drive both the knee and ankle joints. We conduct comprehensive benchtop tests and evaluate the prosthesis with three individuals who have above-knee amputations, assessing its performance in walking, stair climbing, and transitions between sitting and standing. Our evaluation focuses on gathering position and torque data recorded from sensors integrated into the prosthesis and comparing these measurements to biomechanical data of able-bodied locomotion. Our findings highlight the promise of underactuation in advancing lower limb prosthetics and demonstrate the feasibility of our knee–ankle underactuated design in various tasks, showcasing its ability to replicate natural movement.
2024
File in questo prodotto:
File Dimensione Formato  
An_Underactuated_Active_Transfemoral_Prosthesis_With_Series_Elastic_Actuators_Enables_Multiple_Locomotion.pdf

accesso aperto

Licenza: Creative commons (selezionare)
Dimensione 5.14 MB
Formato Adobe PDF
5.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/567532
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact