Control systems of robotic prostheses should be designed to decode the users' intent to start, stop, or change locomotion; and to select the suitable control strategy, accordingly. This paper describes a locomotion mode recognition algorithm based on adaptive Dynamic Movement Primitive models used as locomotion templates. The models take foot-ground contact information and thigh roll angle, measured by an inertial measurement unit, for generating continuous model variables to extract features for a set of Support Vector Machines. The proposed algorithm was tested offline on data acquired from 10 intact subjects and 1 subject with transtibial amputation, in ground-level walking and stair ascending/descending activities. Following subject-specific training, results on intact subjects showed that the algorithm can classify initiatory and steady-state steps with up to 100.00% median accuracy medially at 28.45% and 27.40% of the swing phase, respectively. While the transitory steps were classified with up to 87.30% median accuracy medially at 90.54% of the swing phase. Results with data of the transtibial amputee showed that the algorithm classified initiatory, steady-state, and transitory steps with up to 92.59%, 100%, and 93.10% median accuracies medially at 19.48%, 51.47%, and 93.33% of the swing phase, respectively. The results support the feasibility of this approach in robotic prosthesis control.
A Locomotion Mode Recognition Algorithm Using Adaptive Dynamic Movement Primitives
Eken, Huseyin
;Lanotte, Francesco;Papapicco, Vito;Penna, Michele Francesco;Trigili, Emilio;Crea, Simona;Vitiello, Nicola
2023-01-01
Abstract
Control systems of robotic prostheses should be designed to decode the users' intent to start, stop, or change locomotion; and to select the suitable control strategy, accordingly. This paper describes a locomotion mode recognition algorithm based on adaptive Dynamic Movement Primitive models used as locomotion templates. The models take foot-ground contact information and thigh roll angle, measured by an inertial measurement unit, for generating continuous model variables to extract features for a set of Support Vector Machines. The proposed algorithm was tested offline on data acquired from 10 intact subjects and 1 subject with transtibial amputation, in ground-level walking and stair ascending/descending activities. Following subject-specific training, results on intact subjects showed that the algorithm can classify initiatory and steady-state steps with up to 100.00% median accuracy medially at 28.45% and 27.40% of the swing phase, respectively. While the transitory steps were classified with up to 87.30% median accuracy medially at 90.54% of the swing phase. Results with data of the transtibial amputee showed that the algorithm classified initiatory, steady-state, and transitory steps with up to 92.59%, 100%, and 93.10% median accuracies medially at 19.48%, 51.47%, and 93.33% of the swing phase, respectively. The results support the feasibility of this approach in robotic prosthesis control.File | Dimensione | Formato | |
---|---|---|---|
A_Locomotion_Mode_Recognition_Algorithm_Using_Adaptive_Dynamic_Movement_Primitives.pdf
accesso aperto
Licenza:
Creative commons (selezionare)
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.