This paper proposes a hybrid 6-DoFs localization system for endoscopic magnetic capsules, compatible with external high-grade permanent magnetic locomotion. The proposed localization system, which is able to provide an accurate estimation of the endoscopic capsule pose, finds application in the robotic endoscopy field to provide efficient closed-loop navigation of a magnetically-driven tethered capsule. It takes advantage of two optimization steps based on a triangulation approach, i.e. (1) mathematical approximations of the magnetic field, and (2) minimization of the magnetic field mean square deviation. The proposed localization system was tested in two different in-vitro scenarios for mimicking the clinical cases that a magnetic capsule would encounter during tele-operated magnetic navigation. The development phase was preceded by an in-depth work-space analysis to lay the groundwork for the localization design and implementation. Results of the hybrid 6-DoFs localization system show a significant accuracy in accordance with the state-of-the-art, i.e. < 5 mm and < 5° in position and orientation, but introducing benefits in expanding the work-space by increasing the number of electromagnets on the operating table as an independent solution with respect to the external magnetic locomotion source.

Hybrid 6-DoFs magnetic localization for robotic capsule endoscopes compatible with high-grade magnetic field navigation

Bianchi F.;Masaracchia A.;Damone A.;Oddo C. M.;Dario P.;Ciuti G.
2021-01-01

Abstract

This paper proposes a hybrid 6-DoFs localization system for endoscopic magnetic capsules, compatible with external high-grade permanent magnetic locomotion. The proposed localization system, which is able to provide an accurate estimation of the endoscopic capsule pose, finds application in the robotic endoscopy field to provide efficient closed-loop navigation of a magnetically-driven tethered capsule. It takes advantage of two optimization steps based on a triangulation approach, i.e. (1) mathematical approximations of the magnetic field, and (2) minimization of the magnetic field mean square deviation. The proposed localization system was tested in two different in-vitro scenarios for mimicking the clinical cases that a magnetic capsule would encounter during tele-operated magnetic navigation. The development phase was preceded by an in-depth work-space analysis to lay the groundwork for the localization design and implementation. Results of the hybrid 6-DoFs localization system show a significant accuracy in accordance with the state-of-the-art, i.e. < 5 mm and < 5° in position and orientation, but introducing benefits in expanding the work-space by increasing the number of electromagnets on the operating table as an independent solution with respect to the external magnetic locomotion source.
2021
File in questo prodotto:
File Dimensione Formato  
Bianchi_Ciuti_ACCESS_2021.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Dominio pubblico
Dimensione 3.27 MB
Formato Adobe PDF
3.27 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/542553
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
social impact