Mobile manipulation robots have great potential for roles in support of rescuers on disaster-response missions. Robots can operate in places too dangerous for humans and therefore can assist in accomplishing hazardous tasks while their human operators work at a safe distance. We developed a disaster-response system that consists of the highly flexible Centauro robot and suitable control interfaces, including an immersive telepresence suit and support-operator controls offering different levels of autonomy.
Flexible Disaster Response of Tomorrow: Final Presentation and Evaluation of the CENTAURO System
Leonardis D.;Porcini F.;Solazzi M.;Frisoli A.;Chiaradia D.;Gabardi M.;
2019-01-01
Abstract
Mobile manipulation robots have great potential for roles in support of rescuers on disaster-response missions. Robots can operate in places too dangerous for humans and therefore can assist in accomplishing hazardous tasks while their human operators work at a safe distance. We developed a disaster-response system that consists of the highly flexible Centauro robot and suitable control interfaces, including an immersive telepresence suit and support-operator controls offering different levels of autonomy.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
RAM19.pdf
non disponibili
Tipologia:
PDF Editoriale
Licenza:
Copyright dell'editore
Dimensione
2.56 MB
Formato
Adobe PDF
|
2.56 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.