Prokaryotic flagellum is considered as the only known example of a biological 'wheel,' a system capable of converting the action of rotatory actuator into a continuous propulsive force. For this reason, flagella are an interesting case study in soft robotics and they represent an appealing source of inspiration for the design of underwater robots. A great number of flagellum-inspired devices exists, but these are all characterized by a size ranging in the micrometer scale and mostly realized with rigid materials. Here, we present the design and development of a novel generation of macroscale underwater propellers that draw their inspiration from flagellated organisms. Through a simple rotatory actuation and exploiting the capability of the soft material to store energy when interacting with the surrounding fluid, the propellers attain different helical shapes that generate a propulsive thrust. A theoretical model is presented, accurately describing and predicting the kinematic and the propulsive capabilities of the proposed solution. Different experimental trials are presented to validate the accuracy of the model and to investigate the performance of the proposed design. Finally, an underwater robot prototype propelled by four flagellar modules is presented.

Flagellate Underwater Robotics at Macroscale: Design, Modeling, and Characterization

Calisti, Marcello;Giorgio-Serchi, Francesco;Stefanini, Cesare
Co-ultimo
Supervision
;
Renda, Federico
2022-01-01

Abstract

Prokaryotic flagellum is considered as the only known example of a biological 'wheel,' a system capable of converting the action of rotatory actuator into a continuous propulsive force. For this reason, flagella are an interesting case study in soft robotics and they represent an appealing source of inspiration for the design of underwater robots. A great number of flagellum-inspired devices exists, but these are all characterized by a size ranging in the micrometer scale and mostly realized with rigid materials. Here, we present the design and development of a novel generation of macroscale underwater propellers that draw their inspiration from flagellated organisms. Through a simple rotatory actuation and exploiting the capability of the soft material to store energy when interacting with the surrounding fluid, the propellers attain different helical shapes that generate a propulsive thrust. A theoretical model is presented, accurately describing and predicting the kinematic and the propulsive capabilities of the proposed solution. Different experimental trials are presented to validate the accuracy of the model and to investigate the performance of the proposed design. Finally, an underwater robot prototype propelled by four flagellar modules is presented.
2022
File in questo prodotto:
File Dimensione Formato  
Flagellate_Underwater_Robotics_at_Macroscale_Design_Modeling_and_Characterization.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Creative commons (selezionare)
Dimensione 6.94 MB
Formato Adobe PDF
6.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/575072
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
social impact