We introduce an octopus-inspired, underwater, soft-bodied robot capable of performing waterborne pulsed-jet propulsion and benthic legged-locomotion. This vehicle consists for as much as 80% of its volume of rubber-like materials so that structural flexibility is exploited as a key element during both modes of locomotion. The high bodily softness, the unconventional morphology and the non-stationary nature of its propulsion mechanisms require dynamic characterization of this robot to be dealt with by ad hoc techniques. We perform parameter identification by resorting to a hybrid optimization approach where the characterization of the dual ambulatory strategies of the robot is performed in a segregated fashion. A least squares-based method coupled with a genetic algorithm-based method is employed for the swimming and the crawling phases, respectively. The outcomes bring evidence that compartmentalized parameter identification represents a viable protocol for multi-modal vehicles characterization. However, the use of static thrust recordings as the input signal in the dynamic determination of shape-changing self-propelled vehicles is responsible for the critical underestimation of the quadratic drag coefficient.

Hybrid parameter identification of a multi-modal underwater soft robot

Arienti A.;Corucci F.;Giorelli M.;Laschi C.
2017-01-01

Abstract

We introduce an octopus-inspired, underwater, soft-bodied robot capable of performing waterborne pulsed-jet propulsion and benthic legged-locomotion. This vehicle consists for as much as 80% of its volume of rubber-like materials so that structural flexibility is exploited as a key element during both modes of locomotion. The high bodily softness, the unconventional morphology and the non-stationary nature of its propulsion mechanisms require dynamic characterization of this robot to be dealt with by ad hoc techniques. We perform parameter identification by resorting to a hybrid optimization approach where the characterization of the dual ambulatory strategies of the robot is performed in a segregated fashion. A least squares-based method coupled with a genetic algorithm-based method is employed for the swimming and the crawling phases, respectively. The outcomes bring evidence that compartmentalized parameter identification represents a viable protocol for multi-modal vehicles characterization. However, the use of static thrust recordings as the input signal in the dynamic determination of shape-changing self-propelled vehicles is responsible for the critical underestimation of the quadratic drag coefficient.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/536810
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 46
social impact