Soft robotics is an emerging field that takes advantage of compliant materials and makes use of nonstandard actuators. Flexible fluid actuators (FFAs) use fluid pressure to produce high deformation of elastomeric-based structures. However, closed-loop control of such actuators is still very challenging due to the lack of robust, reliable, and inexpensive sensors that can be integrated onto highly deformable actuator structures, involving very low cost materials and manufacturing. This paper presents a systematic approach to implement the feedback control of FFA-based soft robotic bending modules by using commercial flex bend sensors. A flex bend sensor detects the module curvature in one direction, and its response is processed by an on board microcontroller and sent to the central control system. Such sensor integration enables the closed-loop control of modular robotic architectures, often used in soft robotics. Once integrated with the soft module, the sensor response was calibrated by the use of a ground truth electro-magnetic tracking system in order to characterize its behavior when combined with the relative FFA. A feedback control using a low-pass filter and a proportional-integral controller was designed and used to evaluate the dynamic response and the position accuracy of the integrated module. With such closed-loop control, the module tip is positioned with less than 1 mm accuracy, which can be considered a relevant result in the soft robotics field.

Feedback control of soft robot actuators via commercial flex bend sensors

GERBONI, Giada;DIODATO, ALESSANDRO;CIUTI, GASTONE;CIANCHETTI, Matteo;MENCIASSI, Arianna
2017-01-01

Abstract

Soft robotics is an emerging field that takes advantage of compliant materials and makes use of nonstandard actuators. Flexible fluid actuators (FFAs) use fluid pressure to produce high deformation of elastomeric-based structures. However, closed-loop control of such actuators is still very challenging due to the lack of robust, reliable, and inexpensive sensors that can be integrated onto highly deformable actuator structures, involving very low cost materials and manufacturing. This paper presents a systematic approach to implement the feedback control of FFA-based soft robotic bending modules by using commercial flex bend sensors. A flex bend sensor detects the module curvature in one direction, and its response is processed by an on board microcontroller and sent to the central control system. Such sensor integration enables the closed-loop control of modular robotic architectures, often used in soft robotics. Once integrated with the soft module, the sensor response was calibrated by the use of a ground truth electro-magnetic tracking system in order to characterize its behavior when combined with the relative FFA. A feedback control using a low-pass filter and a proportional-integral controller was designed and used to evaluate the dynamic response and the position accuracy of the integrated module. With such closed-loop control, the module tip is positioned with less than 1 mm accuracy, which can be considered a relevant result in the soft robotics field.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/514481
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 171
social impact