We introduce a general procedure for macroeconomic models’ calibration and validation. Configurations of parameters are selected on the basis of a loss function involving a distance between model-derived structural coefficients and their empirical counterparts. These, in both cases, are locally identified by exploiting non-Gaussianity in a structural vector autoregressive framework under a data-driven approach. We use model confidence set to account for the uncertainty in the selection procedure. We provide a measure of validation by comparing (model’s and empirical) shocks-variables structure. We apply our procedure to a complex macroeconomic simulation model that studies the link between climate change and economic growth.

Calibration and Validation of Macroeconomic Simulation Models by Statistical Causal Search

Mario Martinoli;Alessio Moneta
;
Gianluca Pallante
2024-01-01

Abstract

We introduce a general procedure for macroeconomic models’ calibration and validation. Configurations of parameters are selected on the basis of a loss function involving a distance between model-derived structural coefficients and their empirical counterparts. These, in both cases, are locally identified by exploiting non-Gaussianity in a structural vector autoregressive framework under a data-driven approach. We use model confidence set to account for the uncertainty in the selection procedure. We provide a measure of validation by comparing (model’s and empirical) shocks-variables structure. We apply our procedure to a complex macroeconomic simulation model that studies the link between climate change and economic growth.
2024
File in questo prodotto:
File Dimensione Formato  
Calibration_large_scale_ABM (4).pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Dominio pubblico
Dimensione 2.52 MB
Formato Adobe PDF
2.52 MB Adobe PDF Visualizza/Apri
Martinoli_et_al_JEBO.pdf

accesso aperto

Tipologia: PDF Editoriale
Licenza: Copyright dell'editore
Dimensione 1.45 MB
Formato Adobe PDF
1.45 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/571874
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact