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A B S T R A C T

We introduce a general procedure for macroeconomic models’ calibration and validation.
Configurations of parameters are selected on the basis of a loss function involving a distance
between model-derived structural coefficients and their empirical counterparts. These, in both
cases, are locally identified by exploiting non-Gaussianity in a structural vector autoregressive
framework under a data-driven approach. We use model confidence set to account for the
uncertainty in the selection procedure. We provide a measure of validation by comparing
(model’s and empirical) shocks-variables structure. We apply our procedure to a complex
macroeconomic simulation model that studies the link between climate change and economic
growth.

. Introduction

Policy evaluation in macroeconomics is traditionally carried out within the framework of formal models. Such models serve
s surrogates of laboratories in which, through simulation, counterfactual questions can be addressed. Questions may concern the
ffects of systematic changes in fiscal or monetary policy, but also the economic consequences of climate change. It is evident that
he results of simulations are reliable and useful insofar as the models are empirically plausible; namely to the extent that they
re taken to the data through estimation, calibration or validation (see, e.g., Ireland, 2004; Christiano et al., 2018). In this paper,
e propose a general procedure to both calibrate and (at a subsequent stage) validate macroeconomic models that are sufficiently

omplex that they must be analysed through simulations.
Calibration has a long tradition in empirical macroeconomics (Kydland and Prescott, 1996; Hansen and Heckman, 1996; Cooley,

997; Gomme and Rupert, 2007). Its scope is to restrict the parameters of a model so that the latter is made consistent with empirical
roperties of the data (e.g., stylized facts about long-run growth, or moments of selected time series) or microeconomic observations.
e follow in part this tradition but introduce the novel idea that, when the scope of the model is policy analysis, parameters’ values

hould be selected so that the model reflects key properties of the causal structure underlying the data, where such properties are
dentified via a statistical identification approach, that is, under a minimal set of assumptions, not related to economic theory.
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Our idea of calibration has some overlapping with the strand of literature on estimation of dynamic stochastic general equilibrium
DSGE) models that involves the minimization of the distance between the impulse response functions of the models and the
mpirical impulse response functions (see, in particular, Christiano et al., 2005; Del Negro et al., 2007; Dridi et al., 2007; Hall
t al., 2012; Guerron-Quintana et al., 2017). At odds with these studies, however, we do not rely on indirect inference or simulated

minimum-distance. In fact, the method we propose should be classified as calibration, rather than an estimation. The key difference
between the two notions lies in the fact that a model can be consistently estimated only when the model is identified, whereas
calibration, which can be seen as a complementary tool, can be applied to non-identified (and misspecified) models.

Having discussed the term calibration, we now need to introduce validation. Validation is a notion that is used to address the
following question: How good is your model? The assessment is relative when model’s goodness is relative to other models and absolute
when the model’s performance is measured by fixing a unit of measure. The literature on DSGE modelling has devised important
tools for comparing different models and evaluating the model’s capacity of fitting data, mainly adopting a Bayesian approach.
Comparisons of posterior marginal likelihoods and comparisons of the model’s implied characteristics with a benchmark DSGE-
Vector Autoregressive (VAR) model are prominent examples of relative and absolute validation tools, respectively (Del Negro et al.,
2006; Cantore et al., 2013). The literature on agent-based models (ABMs) has also duly discussed the question of validation (see
Windrum et al., 2007; Fagiolo et al., 2019), as the inherent complexity of these models poses a challenge in empirically validating
them against observed data (Delli Gatti and Grazzini, 2020). Here, the emphasis has been posed on the idea that validation is
bout measuring the extent to which the data generating process (DGP) associated to the calibrated theoretical model is a good
epresentative of the actual (‘‘real-world’’) DGP.

In the last decades, a large literature has emerged on calibration and estimation of complex simulation models, where key notions
seful for validation have been discussed. We have mentioned above indirect inference (Gouriéroux et al., 1993; Smith, 1993) and
imulated minimum-distance (Altissimo and Mele, 2009). Related approaches are the method of simulated moments (McFadden,

1989; Pakes and Pollard, 1989; Zila and Kukacka, 2023), simulated maximum likelihood method (Lee, 1992; Kristensen and Shin,
2012; Kukacka and Sacht, 2023), and approximate Bayesian computation (Grazzini et al., 2017; Frazier et al., 2018). Frameworks
based on surrogate meta-models have also been developed (Lamperti et al., 2018b), which can address computational issues
emerging from simulation and improve the performance of the above-mentioned methods.

In the present work, in the spirit of Guerini and Moneta (2017), we claim that not only calibration, but also validation should be
esigned by taking into account the adequacy for purpose of model building (Parker, 2020). If the objective is policy analysis, and,

specifically, the prediction of the effect of a policy intervention on some variables of interest, a model should be considered ‘‘valid’’
by the extent of which the causal structure associated to the model’s DGP matches the causal structure underlying the ‘‘real-world’’
DGP.

Therefore, our general approach necessarily hinges on tools for causal inference. Causal inference in macro-econometrics is
ntertwined with the discussion of identification of structural equation models (Hoover, 2012), which most economists see as plagued
y the two famous critiques of Lucas (1976) and Sims (1980) (see Favero, 2001). We tackle here causal inference from a very

‘‘agnostic’’ perspective, in tune with the discussion of identification in structural vector autoregressive (SVAR) analysis (Kilian and
Lütkepohl, 2017). For the sake of calibration and validation, we do not need, indeed, to identify a fully-fledged structural equation

odel. Nor is our scope to uncover the entire network of causal relationships among time series variables. We aim at identifying a
et of structural shocks and how they impact a set of variables of interests.

We do this both for the model’s and the ‘‘real-world’’ DGP: we estimate VAR models both from synthetic (i.e., generated by the
odel) and actual data and we identify the corresponding SVAR model by adopting a statistical identification approach. Specifically,

ocal identification of the impact matrix is achieved by exploiting non-Gaussianity in the data, i.e., by applying independent
omponent analysis (ICA) to SVAR modelling, as proposed by Moneta et al. (2013), Lanne et al. (2017), Gouriéroux et al. (2017)

and Herwartz (2018). Our identification strategy is agnostic because, not only we do not rely on economic-theoretic restrictions,
but also, differently from Guerini and Moneta (2017), we do not impose a recursive causal structure on the variables, which can be
difficult to justify from an economic point of view. This comes, however, with a price, since we cannot perform shock labelling: an
identified shock cannot be directly attributed to a specific variable (e.g., output). Nevertheless, by calculating a minimum distance
index (MDI) between impact matrices, we show that it is possible to match shocks between the SVAR models derived from synthetic
data and the ones derived from actual data.

This result is suited to our objective because, on the basis of the MDI, we can build a model confidence set (MCS) proce-
dure (Hansen et al., 2011; Seri et al., 2021; Barde, 2020) that selects a set of model’s configurations of parameters containing
the most appropriate (best) one with a given level of confidence. In other words, MDI enters as loss function in MCS. This step
allows us to achieve calibration of model’s parameters that is consistent with causal analysis. Furthermore, by comparing the causal
links between shocks and variables — the shocks-variables structure — associated with the calibrated configurations of parameters
with the one derived by the actual data, we can propose an absolute measure of validation.

The proposed approach can be applied to any macroeconomic numerical simulation model, including, e.g., DSGE models,
eterogeneous agent (HA) models and ABMs. The only requirements are that the theoretical model under scrutiny can be represented
r adequately approximated by a state–space model and that both the data generated from the model and the actual data have non-
aussian features (see full details below). We use our protocol to validate the ‘‘Dystopian Schumpeter meeting Keynes’’ (DSK) model
y Lamperti et al. (2019a), which can be considered the first agent-based large-scale integrated-assessment model (IAM). IAMs try

to formalize key processes at the intersection of the socio-economic and environmental system, with the aim of providing policy-
relevant insights for decision-making. Indeed, the DSK model features a consumption-good, a capital-good and an energy sector
2 
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Table 2.1
Main notation and acronyms.
VAR Vector autoregression SHD Structural hamming distance

SVAR Structural vector autoregression VM Validation measure
DGP Data generating process ICR Initial Independent component

representation
ABM Agent-based model 0 Initial set of CoPs
DSGE Dynamic stochastic general equilibrium 𝑖 Index of CoPs
IAM Integrated-assessment model 𝑗 Index of Monte Carlo runs
DSK Dystopian Schumpeter meeting Keynes 𝑡 Index of time steps
ICA Independent Component Analysis 𝜃𝑖 Vector of model’s parameters
MDI Minimum distance index 𝐲𝑡 Vector of observed time series
MCS Model confidence set 𝐳𝑗 𝑡 (𝜃𝑖) Vector of simulated time series
CoPs Configuration of parameters ⋆ Set of selected CoPs
�̂� 0 Matrix of real-world contemporaneous

shocks (actual mixing matrix)
�̂� 𝑗 ,0 (𝜃𝑖) Matrix of simulated contemporaneous

shocks (simulated mixing matrix)

which jointly contribute to the Carbon Dioxide emissions process accounting for climate-induced damages. ABMs are interesting
andidates for our approach as it hinges on non-Gaussianity, which is a common feature in data generated by these models.1

The contributions of this paper can be summarized as follows: first, we introduce a general protocol that, in subsequent steps,
can perform both calibration and validation. We spell out its theoretical underpinnings based on SVAR-ICA, MDI, and MCS. The
roposed method turns out to be faster than other procedures based on optimization or the exploration of the parameter space and
educes the risk to deviate from the (pseudo-)true values (e.g., the probability of incurring in multiple local minima, tipping points
r flat regions of the objective function). Second, we propose a novel employment of a statistical (i.e., data-driven) identification
rocedure in the context of calibration and validation. We show that in such context, differently from other settings, lack of global
dentification does not create any hurdle. Furthermore, the fact that the proposed procedure allows recovering the shocks-variable
tructure — attempting to open the causality black box — constitutes an advantage with respect to approaches based on predictive
bility. Third, we present an implementation of MCS which allows the possibility of ranking model’s causal structures from the
ost to the least plausible. Notice that MCS is also in tune with the data-driven approach, as it focuses on the informativeness of

he real-world data (Hansen et al., 2011; Seri et al., 2021). Moreover, our empirical application contributes to the literature that
attempts at calibrating and validating IAMs. Agent-based IAMs, in particular, seem to offer a new paradigm for the assessment of
limate-induced outcomes and climate policy (Lamperti et al., 2019b; Castro et al., 2020; Lamperti and Roventini, 2022). However,

a unified protocol for calibration and validation is still missing. It is worth noting that our application identifies, in the model, a
set of shocks that hit energy and investment and match quite accurately the empirical counterpart found in U.S. data.

The rest of the paper is structured as follows. In Section 2, we summarize the different steps involved in our calibration and
validation technique. In Section 3, we introduce the statistical framework and we provide the SVAR representation for both the model
nd the actual data. In Section 4, we present our general protocol of calibration and validation. In particular: in Section 4.1, we

describe the SVAR-ICA approach to identification; in Section 4.2, we discuss the MDI used as loss function in the MCS; in Section 4.3,
we describe the MCS-based calibration procedure; in Section 4.4, we discuss the validation step. In Section 5, we briefly illustrate
the DSK model. This model is calibrated and validated by applying our general protocol in Section 6. Section 7 concludes.

2. Sketch of the protocol

In Table 2.1, we report the different acronyms with their meaning, alongside the main notation, used throughout the paper.
elow, we summarize our general protocol for calibration and validation. Two steps (1–2) can be seen as preliminary:

1. Select a discrete set 0 ∶= {1,… , 𝑚0} of configurations of parameters (henceforth, CoPs) from the parameter space of the
theoretical model object of the study. A vector of parameters 𝜃𝑖 (𝑖 = 1,… , 𝑚0) is associated to each CoP. From the same
model, for each CoP 𝑖, simulate 𝑛 Monte Carlo runs, denoted by 𝐳𝑗 𝑡

(

𝜃𝑖
)

, with 𝑗 = 1,… , 𝑛 and 𝑡 = 1,… , 𝑇 . The vector 𝐳𝑗 𝑡
(

𝜃𝑖
)

is 𝐾−dimensional.
2. Select a 𝐾 × 1 vector 𝐲𝑡 of observed time-series macroeconomic data, with 𝑡 = 1,… , 𝜏. We refer to 𝐲𝑡 as the real-world or

actual data. Estimate a reduced-form VAR model both from 𝐳𝑗 𝑡
(

𝜃𝑖
)

(for each 𝑖 and 𝑗) and 𝐲𝑡.

The next 3 steps (3–5) refer to calibration:

3. For each estimated VAR model, estimate the impact matrix, i.e., the matrix that describes the contemporaneous impact of
the shock on the variable of interest. This matrix, which we refer to as the mixing matrix, is locally identified by ICA applied
to the VAR residuals. We call �̂� 0 the mixing matrix estimated from 𝐲𝑡, and �̂� 𝑗 ,0(𝜃𝑖) the one estimated from 𝐳𝑗 𝑡

(

𝜃𝑖
)

.
4. Calculate the MDI between �̂� 𝑗 ,0(𝜃𝑖) and �̂� 0 and record the unique signed-permutation matrix 𝐂𝑗 𝑖 associated to it, for each 𝑗

and 𝑖.

1 Examples of DSGE models characterized by non-Gaussian shocks can be found in An and Schorfheide (2007) and Cúrdia et al. (2014).
3 
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5. Apply the MCS using the MDI as loss function and select the set ⋆ of CoPs that minimizes the expected loss. The selected
CoPs are statistically indistinguishable given a level of confidence.

The last 2 steps (6–7) concern only validation:

6. For each �̂� 𝑗 ,0(𝜃𝑖)𝐂′
𝑗 𝑖, with 𝑖 ∈ ⋆ ⊆0, test the significance of its entries, exploiting distributions obtained by Monte Carlo

simulations across 𝑗. In a similar manner, test the significance of the entries of �̂� 0 via bootstrap. For each CoP and the actual
data, infer a causal structure (which we call independent component representation) representing the significant influences
from shocks to variables.

7. Compare the shocks-variables structure associated to CoPs 𝑖 ∈ ⋆ ⊆ 0 to the ‘‘real-world’’ shocks-variables structure,
using a validation measure (VM) based on the Structural Hamming Distance (SHD). SHD measures how many entries of the
matrices representing the two structures do not coincide.

3. SVAR representation

Our method moves from the assumption that both the stochastic process underlying a set of observed macroeconomic data (what
e call the ‘‘real-world’’ DGP) and the process underlying a macroeconomic simulation model (model DGP) can be approximated

by a SVAR model.

Example 1 (DSGE Representation). A DSGE model can be represented by a reduced-form VAR following the conditions devised
in Fernández-Villaverde et al. (2007) and Ravenna (2007).

Example 2 (ABM Representation). Analogously, the relationship between an ABM and a SVAR (see, e.g., Guerini and Moneta, 2017
and Delli Gatti and Grazzini, 2020) can be justified by the fact that an ABM can be approximated by a state–space model (Hinkelmann
et al., 2011), and the latter can in turn be approximated by a finite-order VAR model (Giacomini, 2013).2 Examples of state–space
representation are common in the data assimilation literature (see Ward et al., 2016). Moreover, Gusella and Ricchiuti (2024)
introduce a formal framework for the state–space representation of heterogeneous interacting agents models.

In the following, we consider a set of 𝐾 time series variables 𝐲𝑡 = (𝑦1𝑡,… , 𝑦𝐾 𝑡)′, corresponding to a set of 𝐾 observed
acroeconomic variables and a set of 𝐾 time series variables 𝐳𝑗 𝑡(𝜃𝑖) corresponding to a set of data generated by a (simulated)

heoretical model for vector of parameters 𝜃𝑖 and Monte Carlo run 𝑗 (𝑖 = 1,… , 𝑚0; 𝑗 = 1,… , 𝑛).
The process generating 𝐲𝑡 is represented by the following SVAR model:

𝜞 0𝐲𝑡 = 𝜞 1𝐲𝑡−1 +⋯ + 𝜞 𝑃 𝐲𝑡−𝑃 + 𝜺𝑡 (3.1)

where 𝜞 𝑝 (for lag 𝑝 = 0,… , 𝑃 ) are 𝐾 × 𝐾 matrices denoting the contemporaneous and lagged structural coefficients, and 𝜺𝑡 is
a 𝐾-dimensional vector of i.i.d. structural error terms (or shocks) with covariance matrix 𝜮𝜺, which we assume to be diagonal.
Eq. (3.1) may also contain a constant (or even a deterministic trend), which we omit here for convenience, not being relevant for
the present discussion. This model can be rewritten in a form that omits contemporaneous causality. This is the reduced-form VAR
model, which turns out to be more convenient for estimation:

𝐲𝑡 = 𝐀1𝐲𝑡−1 +⋯ + 𝐀𝑃 𝐲𝑡−𝑃 + 𝐮𝑡 (3.2)

where 𝐀𝑝 = 𝜞 −1
0 𝜞 𝑝 (𝑝 = 1,… , 𝑃 ), and 𝐮𝑡 = 𝜞 −1

0 𝜺𝑡, i.e. 𝐮𝑡 is a vector of i.i.d. processes with covariance matrix 𝜮𝐮 = E
{

𝐮𝑡𝐮′𝑡
}

=
𝜞 −1

0 𝜮𝜺𝜞
−1,′
0 . We call the impact matrix 𝜳 0 = 𝜞 −1

0 the real-world mixing matrix.
Analogous representation holds for data generated by the simulation model:

𝜞 𝑗 ,0
(

𝜃𝑖
)

𝐳𝑗 ,𝑡
(

𝜃𝑖
)

=𝜞 𝑗 ,1
(

𝜃𝑖
)

𝐳𝑗 ,𝑡−1
(

𝜃𝑖
)

+⋯ + 𝜞 𝑗 ,𝑃
(

𝜃𝑖
)

𝐳𝑗 ,𝑡−𝑃
(

𝜃𝑖
)

+ 𝜺𝑗 𝑡
(

𝜃𝑖
)

(3.3)

𝐳𝑗 𝑡
(

𝜃𝑖
)

=𝐀𝑗 ,1
(

𝜃𝑖
)

𝐳𝑗 ,𝑡−1
(

𝜃𝑖
)

+⋯ + 𝐀𝑗 ,𝑃
(

𝜃𝑖
)

𝐳𝑗 ,𝑡−𝑃
(

𝜃𝑖
)

+ 𝐮𝑗 𝑡
(

𝜃𝑖
)

, (3.4)

where 𝜺𝑗 𝑡
(

𝜃𝑖
)

and 𝐮𝑗 𝑡
(

𝜃𝑖
)

are the model’s shocks and the reduced-form residuals, respectively. We call the impact matrix 𝜳 𝑗 ,0
(

𝜃𝑖
)

=
𝜞 −1
𝑗 ,0

(

𝜃𝑖
)

the model mixing matrix associated to the 𝑗th Monte Carlo run of the 𝑖th CoP of the simulated model. As well known in the
SVAR analysis, the mixing matrix is key for identification.

It is important to notice that the shocks 𝜺𝑗 𝑡
(

𝜃𝑖
)

may have different interpretations and origins, depending on whether the SVAR
odel is used for representing an ABM or, rather, a DSGE model. In a DSGE model there is a close correspondence between

he structural shocks referring to the equations of the linearized theoretical model and the structural shocks obtained from the
AR model fitted on the simulated data. Instead, if we fit a VAR model on data generated by an ABM, the SVAR model’s

dentified shocks represent macro-level forces resulting from the aggregation of micro-level, idiosyncratic shocks. Examples of
icro-level shocks include idiosyncratic and heterogeneous technological improvements that firms may enjoy, unexpected cuts

2 Giacomini (2013) specifies that the approximation of a DSGE in terms of a VAR model proceeds in three stages: (i) from DSGE to state–space model; (ii)
from state–space model to VAR(∞); (iii) from VAR(∞) to finite-order VAR. For our purposes, we focus on the second and third steps: as long as the ABM can
be approximated be a state–space representation, the latter can be carved into a finite-order VAR.
4 
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in credit supply, unforeseen revisions in investment plans. Moreover, as in Delli Gatti and Grazzini (2020) and, more generally,
n macro ABM standard practice, the modeller can externally introduce unanticipated policy shocks during the simulation to see
ow the contemporaneous causal structure embedded in the model dynamically unfolds in the system. This is rather distinct with
espect to DSGE models, where equilibrium conditions — which theoretically determine the contemporaneous causal structure of the
odel — are externally hit by shocks whose correspondence with VAR model’s innovations is close by construction (making their

nterpretation easier and straightforward). On this matter, for the purpose of complex-simulation models’ calibration and validation,
t becomes of interest to assess, on the basis of the statistical identification approach that we pursue, whether there is correspondence
etween the shocks derived by the SVAR model that represents the ABM and the shocks identified from the real-world data.

4. Calibration and validation protocol

We now enter the core of our calibration-validation procedure. Moving from the (S)VAR representability of our DGPs, in this
ection we provide the theoretical background for the steps 3–7 of Section 2.

4.1. The SVAR-ICA approach to identification

Our general protocol is based on a comparison between the SVAR models estimated from the synthetic data (one for each
Monte Carlo run) and the one derived from the actual data. Thus, there is a problem of identification to be faced. We adopt here
a data-driven approach to identification, which allows us to avoid strong a priori restrictions (e.g., theoretical short-run or sign
restrictions). Specifically, we use independent component analysis, which exploits non-Gaussianity. With this approach, we obtain
local identification but, as we will explain in the next subsection, our index of comparison between SVAR models remains invariant
to lack of global identification.

ICA is a statistical method that models a set of observed random variables as a linear combination of independent latent random
ariables, called the independent components (Comon, 1994; Hyvärinen et al., 2001). In line with the applications of ICA to SVAR

analysis (see, for instance, Moneta et al., 2013; Gouriéroux et al., 2017; Lanne et al., 2017; Herwartz, 2018), the input data are the
stimated reduced-form residuals 𝐮𝑡 (or 𝐮𝑗 𝑡(𝜃𝑖)) and the latent independent components are the structural shocks 𝜺𝑡 (or 𝜺𝑗 𝑡(𝜃𝑖)).

Given that 𝐮𝑡 = 𝜳 0𝜺𝑡, the ICA model recovers (up to some indeterminacy, see below) 𝜳 0 and 𝜺𝑡 from realizations of 𝐮𝑡 under the
ssumptions that the components 𝜺𝑡 are non-Gaussian (with at most one exception) and that 𝜳 0 is invertible (see, e.g., Hyvärinen

et al., 2001 and Hyvärinen, 2013). Notice that the same assumptions hold for 𝜺𝑗 𝑡
(

𝜃𝑖
)

and 𝜳 𝑗 ,0
(

𝜃𝑖
)

. The indeterminacy is related
to the fact that ICA identifies 𝜳 0 up to the post-multiplication of a generalized permutation matrix 𝐃𝐏, where 𝐃 is a diagonal
matrix and 𝐏 is a permutation matrix.3 This means that the order and scale of the shocks are not identified. Our choice of the

inimum-distance index allows us to tackle this issue.4
In the ICA literature, many methods have been developed to estimate 𝜳 0 from 𝐮𝑡. Some of them are based on the minimization

f a contrast function whose argument is a vector of parameters 𝜔 determining the rotation angles of the orthogonalized input data.
he method based on the minimization of the Cramér–von-Mises statistics proposed by Herwartz and Plödt (2016) and the method
ased on distance covariance developed by Matteson and Tsay (2017) use this approach. Another established technique considers

semi-parametric estimators of the pseudo-maximum likelihood function (Gouriéroux et al., 2017). A different approach exploiting
nformation theory techniques has been developed by Hyvärinen (1999) and Hyvärinen and Oja (2000). The authors formulate a
ixed-point algorithm called fastICA. This technique relies on the maximization of the non-Gaussianity of 𝜸′𝑘𝐮𝑡, where 𝜸′𝑘 is the 𝑘th

row of the matrix 𝜞 0, for each 𝑘 = 1,… , 𝐾. Moneta and Pallante (2022) provide a performance evaluation study comparing fastICA
ith other ICA estimators, showing its relative robustness and reliability in a SVAR setting. We therefore choose to adopt fastICA
lgorithm to estimate and identify our SVAR-ICA model. In Appendix A, we state the assumptions underlying the ICA model and
he fastICA estimator.

4.2. Minimum distance index

We present here the minimum distance index, which allows us to calculate the distance between impact matrices identified by
CA, tackling the issue of the scale/order indeterminacy. The MDI is inspired by Matteson and Tsay (2017), who suggest to measure

the error between the estimate �̂� 0 and the true value 𝜳 0 exploiting the metric proposed by Ilmonen et al. (2010). Here, instead, we
want to measure the discrepancy between the model mixing matrix and the real-world mixing matrix. The index finds the shortest
discrepancy by searching across all the possible column-signed permutations of the model mixing matrix, by keeping the real-world
mixing matrix as reference matrix.5 In other words, the MDI is invariant to all possible column’s permutations and changes of sign
of the estimated model mixing matrix. To simplify the notation, in the following we write 𝐷𝑗 𝑖 ∶= 𝐷

(

�̂� 𝑗 ,0
(

𝜃𝑖
)

, Ψ̂0

)

.

3 We recall that a generalized permutation matrix is a matrix that has exactly one non-zero element in each row and each column.
4 It is customary to normalize SVAR models so that the structural shocks have unit standard deviations, meaning that impulse response functions refer to one

standard-deviation shock. In this manner, the scale problem is resolved (this normalization involves a re-scaling of the columns of the mixing matrix), but not
ompletely because the sign of shocks (or of their impacts) remains undetermined. Therefore, one can conclude that 𝜳 0 is identified up to the post-multiplication
f a signed permutation matrix 𝐉𝐏 (where 𝐉 is a sign-change matrix, i.e. a diagonal matrix with only +1 or −1 entries on the main diagonal, and 𝐏 is a
ermutation matrix).

5 In our application of the procedure, for convenience, the columns of the real-world mixing matrix are signed-permuted by applying the Maxfinder criterion
n a hierarchical manner, as proposed by Bruns et al. (2021). However, results are not sensitive to any signed-permutation of the columns of the matrix �̂� .
0
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Definition 1. The minimum-distance index for �̂� 𝑗 ,0
(

𝜃𝑖
)

is:

𝐷𝑗 𝑖 ∶= 1
√

𝐾 − 1
inf

𝐂𝑗 𝑖∈
‖

‖

‖

‖

𝐂𝑗 𝑖�̂�
−1
𝑗 ,0

(

𝜃𝑖
)

�̂� 0 − 𝐈𝐾
‖

‖

‖

‖𝐹
(4.1)

where

 =
{

𝐂𝑗 𝑖 ∈  ∶ 𝐂𝑗 𝑖 = 𝐏𝑗 𝑖𝐉𝑗 𝑖 f or some 𝐏𝑗 𝑖 and 𝐉𝑗 𝑖
}

,

 is the set of full-rank 𝐾 × 𝐾 matrices, 𝐏𝑗 𝑖 is a permutation matrix, 𝐉𝑗 𝑖 is a sign-change matrix, �̂� 𝑗 ,0
(

𝜃𝑖
)

is the estimator of the
model mixing matrix 𝜳 𝑗 ,0

(

𝜃𝑖
)

, �̂� 0 is the estimator of the real-world mixing matrix 𝜳 0 (from real data), 𝐈𝐾 is the identity matrix
and ‖⋅‖𝐹 is the Frobenius norm. When the value of 𝐷𝑗 𝑖 approaches 0, we have that �̂� 𝑗 ,0

(

𝜃𝑖
)

is close to �̂� 0.
Since it implies the minimization over all choices 𝐂𝑗 𝑖 ∈ , 𝐷𝑗 𝑖 seems to require high computational costs, especially when the

number of variables 𝐾 increases. However, this is not a real drawback in our case. First, VAR models that are usually treated in the
macroeconomic literature considers a limited number of variables (typically 𝐾 < 10). Second, we compute the MDI following the
two-steps procedure described by Ilmonen et al. (2010, pp. 234–235), which reduces the optimization problem over all permutation
matrices 𝐏𝑗 𝑖 of Eq. (4.1) to a linear programming problem that can be solved using specific algorithms (e.g., the Hungarian method).

4.3. Model confidence set

We now present our calibration procedure, which is based on the Model Confidence Set. MCS is a statistical procedure that
allows the researcher to find the best CoPs, with a given level of confidence, among a discrete set of candidates (Hansen et al.,
2011). To perform this selection, the researcher needs to specify a loss function, a selection criterion, and an elimination rule. Since
our purpose is to select the set of CoP(s) delivering causal structures that match as close as possible the structure underlying the
actual data, we use the MDI as loss function.

From the set of CoPs 0, MCS selects a set ∗ with cardinality greater or equal than one. We recall that to each CoP is
associated a vector of parameters (to be calibrated) 𝜃𝑖, for 𝑖 = 1,… , 𝑚0. For each CoP 𝑖: (i) we run 𝑛 Monte Carlo simulations 𝐳𝑗 𝑡

(

𝜃𝑖
)

(𝑗 = 1,… , 𝑛); (ii) we derive the model mixing matrix �̂� 𝑗 ,0
(

𝜃𝑖
)

(for each Monte Carlo 𝑗); and (iii) we compute the MDI between
�̂� 𝑗 ,0

(

𝜃𝑖
)

and the real-world mixing matrix Ψ̂0 (for each 𝑗).
Let 𝐷𝑖 ∶= E�̂� 0(𝜃𝑖) 𝐷

(

�̂� 𝑗 ,0
(

𝜃𝑖
)

, �̂� 0

)

be the expected MDI relative to CoP 𝑖, where the expectation term is taken over the values
that the estimated model mixing matrix takes across Monte Carlo runs. Let 𝐃 ∶= (𝐷1,… , 𝐷𝑚0

)′ be the 𝑚0-dimensional vector of

hese expected values for the 𝑚0 CoPs. Let 𝐷
(𝑛)
𝑖 ∶= 1

𝑛
∑𝑛
𝑗=1𝐷𝑗 𝑖 and 𝐃

(𝑛)
∶=

(

𝐷
(𝑛)
1 ,… , 𝐷

(𝑛)
𝑚0

)′
be the sample counterparts of 𝐷𝑖 and 𝐃

respectively. Defining 𝐃𝑗 ∶=
(

𝐷𝑗1,… , 𝐷𝑗 𝑚0

)′
, the sample average distance can be rewritten as 𝐃

(𝑛)
∶= 1

𝑛
∑𝑛
𝑗=1 𝐃𝑗 .

We aim at finding the CoPs achieving the minimal MDI. Let

⋆ ∶=
{

ℎ ∈ 0 ∶ 𝐷ℎ = min
𝑖∈0

𝐷𝑖

}

(4.2)

be the set of parameters minimizing the distance 𝐷𝑖. For 𝑖 ∈ 0, the estimator �̂�(𝑛) is the value that minimizes the sample average
distance 𝐷

(𝑛)
𝑖 . Note that �̂�(𝑛) is a singleton while ∗ is not necessarily so.

To achieve a given level of confidence in the selection procedure, we need to formulate a statistical test. To this aim, we estimate,
via Gaussian quasi-likelihood, 𝐷𝑖 and 𝜎2𝑖 ∶= V�̂� 0(𝜃𝑖)𝐷

(

�̂� 𝑗 ,0
(

𝜃𝑖
)

, �̂� 0

)

, following Seri et al. (2021). To do that, 𝐃𝑗 must be independent
nd identically distributed and, for each 𝑖 ∈ 0, the distances 𝐷𝑗 𝑖 must be independent. Moreover, the mean E𝐷𝑗 𝑖 must exists and
e finite for each 𝑖 ∈ 0. These requirements guarantee the consistency and measurability of �̂�(𝑛). These properties derive directly
y the fact that each simulation 𝐳𝑗 𝑡

(

𝜃𝑖
)

is independent across Monte Carlo runs. Moreover, fixed 𝑖 ∈ 0, 𝐳𝑗 𝑡
(

𝜃𝑖
)

are identically
istributed (see also Choirat and Seri, 2012, Proposition 1, p. 280). At last, we need finite 𝜎2𝑖 . All these requisites are either fulfilled

by the construction of the simulation model or verified in the data. Therefore, we can use standard statistical hypothesis testing to
test 𝑚0 restrictions of the model at the same time.

We define the equivalence test 𝛿 and the selection rule 𝑒 associated to the set  ⊆ 0. The test has a null 𝖧0, and an
lternative hypothesis 𝖧1,:

𝖧0, ∶𝐷𝑖 = 𝐷ℎ,∀𝑖, ℎ ∈ ; (4.3)

𝖧1, ∶∃𝑖, ℎ ∈  such t hat 𝐷𝑖 ≠ 𝐷ℎ. (4.4)

If the test rejects the null hypothesis, then 𝛿 = 1, else 𝛿 = 0. When 𝛿 = 1 we use 𝑒 ∶= ar g maxℎ∈𝐷
(𝑛)
ℎ to remove a CoP

from  (i.e., we select the index ℎ ∈  which provides the largest value 𝐷
(𝑛)
ℎ ). Now, we introduce the sequence of subsets of 0,

𝑖+1 = 𝑖 ⧵ 𝑒𝑖
for 𝑖 = 1,… , 𝑚0 − 1, and the 𝑝-values of the test procedure 𝑝𝖧0,𝑖

, where we impose that 𝑝𝖧0,𝑚0
≡ 1. Therefore,

he MCS 𝑝-value can be defined as follows:

𝑝𝑒ℎ
∶= max

𝑖≤ℎ
𝑝𝖧0,𝑖

, (4.5)

for ℎ = 1,… , 𝑚 . The algorithm for the implementation of the MCS is reported in Appendix B.
0
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Note that our MCS-based calibration procedure can be easily adapted to a MDI which refers not just to the mixing matrices,
i.e. 𝜳 0, 𝜳 𝑗 ,0

(

𝜃𝑖
)

, but rather to structural moving-average matrices at different lags, 𝜳𝓁 , 𝜳 𝑗 ,𝓁
(

𝜃𝑖
)

(with 𝓁 = 1,… , 𝐻). However,
we focus on the former matrices, since the identification of the latter depends on the mixing matrices, which ICA is able to locally
identify in a data-driven fashion. Therefore, the comparison of structural matrices at time horizons greater than zero does not provide
additional information about structural identifiability.

4.4. Validation step

Once the MCS-based calibration is performed, it is possible to investigate the behaviour of the causal structures associated to the
CoPs which pass the test. By comparing such behaviour with the causal structure associated with the real-world DGP, we propose
a measure of model validation. Such measure fulfils two desirable criteria. First, it is a measure that is bounded by construction
between zero and one. Thus, it delivers an absolute assessment and can be used to compare the performance of models of different
nature. Second, it focuses on properties of the causal structures that both are significant from a statistical point of view and can be
inferred from the data without further theoretical restrictions.

Notice that we have only partial information about the causal structure underlying the real-world DGP, which is our reference
point. From ICA, as already pointed out, we get an estimate of 𝜳 0 which is underdetermined by permutations and changes of sign
of its columns. Thus, since we do not want to impose further restrictions, we do not obtain labels of shocks, i.e., we cannot relate
shocks with variables. But, by bootstrap, we can recover the causal structures between the (mutual independent) real-world shocks
and variables, by inferring which shocks 𝜀𝑘𝑠 ,𝑡 (with 𝑘𝑠 = 1,… , 𝐾) have significant impacts on variables 𝐲𝑡 = (𝑦1,𝑡,… , 𝑦𝐾 ,𝑡)′. From
the simulated data, we get an estimate of 𝜳 𝑗 ,0

(

𝜃𝑖
)

, which contains in principle the same column/sign indeterminacy. However,
the calculation of the MDI 𝐷𝑗 𝑖 has provided a unique matrix 𝐂𝑗 𝑖 for each 𝑗 and 𝑖. From �̂� 𝑗 ,0

(

𝜃𝑖
)

𝐂′
𝑗 𝑖, we get a one-to-one mapping

between the impacts of the simulated shocks and the impacts of the real-world shocks. This warrants the possibility of comparing the
real-world shocks-variables structures with the model’s shocks-variables structures, which can be inferred by exploiting the Monte
Carlo simulations.

We represent the shocks-variables structure via a matrix called ‘‘independent component representation’’ (ICR) (see Casini et al.,
2021, for a graph-theoretic definition). An ICR is a 𝐾 ×𝐾 matrix whose entries are zeros or ones. The entry ⟨𝑘𝑣, 𝑘𝑠⟩ is 1 if and only
if there is a significant impact of the shock 𝜀𝑘𝑠 ,𝑡 (or 𝜀𝑘𝑠 ,𝑡

(

𝜃𝑖
)

) on the variable 𝑦𝑘𝑣 ,𝑡 (or 𝑧𝑘𝑣 ,𝑡
(

𝜃𝑖
)

), for 𝑘𝑣, 𝑘𝑠 = 1,… , 𝐾.
Whether an impact is significant or not is based on significance tests on the coefficients which enter in the matrices �̂� 0 and

̂ 𝑗 ,0
(

𝜃𝑖
)

𝐂′
𝑗 𝑖, with 𝑖 ∈ ∗ ⊆ 0. As regards �̂� 0, the significance tests is based on the wild bootstrap procedure (see Kilian and

Lütkepohl, 2017, Sec. 12.2.3): at each bootstrap iteration 𝑛∗ (𝑛∗ = 1,… , 𝑁∗), the bootstrap-estimated mixing matrix �̂�
𝑛∗

0 is right-
multiplied by a signed permutation matrix 𝐂′

𝑛∗ , where 𝐂𝑛∗ corresponds to the arg inf of the MDI between �̂�
∗
0 and �̂� 0 (consistently

to the scheme we apply to the model mixing matrices).
Once we have obtained ICRs for both synthetic and real data, we calculate the Structural Hamming Distance to be used in the

proposed validation measure. SHD originates from information theory and is generally used to compare the similarity of blocks of
words of equal length. In the field of causal networks, SHD has been introduced by Acid and de Campos (2003) and Tsamardinos
et al. (2006) to confront directed acyclic graphs.

Let ICRr w be the ICR representing the real-world shocks-variables structure and ICRsim the analogous structure for the model’s
hocks and variables. We adapt SHD such that it counts how many entries of the two matrices do not coincide. We define our
alidation measure as follows:

Definition 2. The validation measure of ICRsim with respect to ICRr w is:

VM ∶= 1 − 𝑆 𝐻 𝐷∕𝐾2, (4.6)

where 𝐾2 is the number of entries in each ICR.

If SHD → 0, then VM → 1. For a given 𝐾, the smaller is SHD, the closer is, under this interpretation, the model’s causal structure
to the real-world causal structure. In particular, SHD counts, in a theory-free fashion, how many edges differ between ICRr w and
ICRsim. Even though the resulting validation measure does not distinguish between matching due to common presence or common
absence of edges, it is helpful in providing a synthetic score of how good is a model in capturing a reference causal structure. Finally,
his measure is alternative to the measures proposed by Guerini and Moneta (2017) (namely, sign-based, size-based and conjunction

measures) as it is both general and more in tune with the literature on causal search.6

6 It may be argued that using the same empirical data both to calibrate and to validate the model can yield a sort of ‘‘double-counting’’ and can raise issues
f circularity. Steele and Werndl (2013) show that in fact double-counting is not problematic, building on a Bayesian theory of confirmation, but also showing

its legitimacy in a frequentist approach. Note that Steele and Werndl (2013) develop their argument for the calibration-confirmation problem, but that this holds
a fortiori for calibration-validation, since our validation step is merely based on a distance between causal structures.
7 
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Table 6.1
Parameter notations and interval values.

Description Parameter Values

𝐵 𝑒𝑡𝑎 distribution support (innovation) 𝑥 [−0.15,−0.05]
𝑥 [0.05, 0.15]

𝐵 𝑒𝑡𝑎 distribution support (energy) 𝑥en [−0.1,−0.01]
𝑥en [0.01, 0.1]

Firm search capabilities parameters 𝜁1,2 [0.3, 1]
Payback period (industrial) 𝑏 [2, 3.75]
Consumption-good firm initial mark-up 𝜇0 [0.2, 0.3]
Mark-down for bank deposits 𝜇𝑑 𝑒𝑝 [0.75, 1]
Mark-down on the bank reserves at Central Bank 𝜇𝑟𝑒𝑠 [0.5, 0.9]

5. The DSK model

In this section, we briefly illustrate the DSK model by Lamperti et al. (2019a), which is the object of our application. The DSK
family of models represents the first attempt to provide an agent-based integrated assessment model, in the spirit of contributions in
nvironmental economics (Weyant, 2017), as it combines energy, climate and economic modelling to offer an integrated perspective

on emission trajectories, decarbonization pathways and the corresponding policies to implement. It has been recently used to study
scenarios under which green transitions are more likely to occur (Lamperti et al., 2020) and to analyse the public costs of climate-
nduced financial instability (Lamperti et al., 2019a), as well as to evaluate financial policies aimed at dealing with increasing climate

risks. In particular, DSK models allow tackling several problems that plague traditional general-equilibrium integrated assessment
models, by enhancing the degree of heterogeneity, improving the representation of radical uncertainties, refining the technological
change process, and obtaining an accurate assessment of climate scenarios (Stern and Stiglitz, 2021).

The DSK model by Lamperti et al. (2019a) features a manufacturing sector, populated by heterogeneous and interacting firms,
devoted to the production of either capital or consumption goods and receiving inputs from an energy sector. The financial system
is represented by a banking sector in which banks — heterogeneous in number of clients, balance-sheet structure, and lending
conditions — decide the amount of credit to provide to their clients subject to a capital requirement and leverage conditions.
The energy sector is populated by heterogeneous plants embracing different energy generation technologies (‘‘clean’’ and ‘‘dirty’’)

hich possess diverse cost structures and emission intensities. Moreover, it is characterized by an exogenous fossil fuel sector which
rovides dynamics and boundary conditions (reflecting scarcity) on the price of an undifferentiated fossil fuel. The production
ctivities of energy and manufacturing firms lead to CO2 (equivalent) emissions, which increase temperature in a nonlinear way.
echnical change occurs both in the manufacturing and energy sectors. Capital-good firms develop new vintages of machines that
re both more productive and more ‘‘green’’. The energy sector can improve both the ‘‘brown’’ and ‘‘green’’ energy generation
echnologies. Innovation determines the cost of energy produced by dirty and green technologies, which, in turn, affect the energy-
echnology production mix and the total amount of CO2 emissions. Finally, the government sector collects taxes on profits and pays
nemployment benefits. A detailed description of the model is provided in Section 1 of the Supplementary Material.

Our approach to calibration and validation puts emphasis on the ability of the model to deliver empirically reliable causal
structures concerning the real side of the economy, the energy sector, and climate-related outcomes. The DSK model (Lamperti
et al., 2019a), as well as its two-sector predecessor, the ‘‘Schumpeter meeting Keynes’’ (K+S) model (Dosi et al., 2010, 2013, 2015),
have undertaken a wide, yet manual, exploration of the parameter space that ensures, at a macro level, reasonable and stable
ong-run economic trajectories, along with endogenous business cycle dynamics. In particular, the DSK version that we analyse in
his paper (Lamperti et al., 2019a) has been indirectly calibrated by the authors to reproduce stylized facts such as energy demand

and CO2 emission patterns that are consistent with the shared socioeconomic pathway 5 (SSP5, see Riahi et al., 2017)
For this reason, the 𝐾 variables of interest are: aggregate output (𝐺 𝐷 𝑃 ), consumption (𝐶 𝑜𝑛𝑠), investments (𝐼 𝑛𝑣), unemployment

ate (𝑈 𝑅), a price index (𝐶 𝑃 𝐼), demand of energy (𝐸 𝑛𝑒𝑟), and total emissions of Carbon Dioxide (𝐸 𝑚𝑖𝑠𝑠).

6. Application of the general protocol

In this section, we show the results of the application of the general protocol for calibration and validation, presented in Section 4,
to the DSK model illustrated in Section 5.

The starting point is the choice of the discrete set of parameters to be calibrated. This choice hinges on the detection of those
features that have the highest influence on the behaviour of the macroeconomic output (see Lamperti et al., 2019a). In Table 6.1,
we summarize the selected parameters and the intervals in which they vary.

The range of variation of the parameters is defined considering previous experiments (see Lamperti et al., 2019a, and references
therein). We refer to Section 1 of the Supplementary Material (SM) for details regarding the description and the main equations of
the model.

In the spirit of Dosi et al. (2010) and Lamperti et al. (2018a), the support of the Beta distribution (𝑥 and 𝑥) models the notional
possibilities of technological advance and the relative frequency of (un)successful innovations. This translates into the technological
opportunities for capital-good firms to improve upon the productivity, energy efficiency and environmental friendliness of the
machineries produced. The parameter 𝑥 is the lower bound of the support of the 𝐵 𝑒𝑡𝑎 distribution and it varies between −0.15 and
8 
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−0.05, while 𝑥 is the upper bound of the support and it ranges between 0.05 and 0.15. The parameters 𝑥 and 𝑥 are symmetric,
hence when 𝑥 = −0.15, 𝑥 = 0.15 (SM, Section 1.1). Similarly, in the energy sector the support of the Beta distribution (𝑥en,
𝑥en) dictates the likelihood of building a new green or dirty plant. Differently from previous indirect calibration procedures, we
allow for the possibility for the capital-good and energy sector to have different access to innovation opportunities. Accordingly,
𝑥en varies between −0.1 and −0.01, while 𝑥en varies between 0.01 and 0.1 (SM, Section 1.3). To a similar extent, the search
capabilities parameters (𝜁1,2) influence the growth engine of the model by enlarging (or restricting) the possibilities of accessing
‘‘innovations’’, regardless they constitute an improvement or not. In particular, higher values of these parameters imply a lower
egree of technological asymmetry, as all firm access more easily to innovations, thus easing the effects of the Schumpeterian

‘creative destruction’’ (Dosi et al., 2010). The firm search capabilities parameters 𝜁1,2 vary between 0.3 and 1 (SM, Section 1.1).
Finally, the process of technical change transmits to downstream consumption-good firms when they invest in more productive
machineries. Thus, the frequency at which consumption-good firms replace machinery equipment, matters for both growth and
business cycle dynamics. This choice is determined following a payback period routine. The parameter 𝑏 influence this decision as
firms compare newly available machineries to the set of the existing ones in terms of prices and costs. The range of variation of the
payback period parameter 𝑏 for the industrial sector, goes from 2 to 3.75 (SM, Section 1.2).

The price of consumption-good firms is determined as a mark-up on the unit production cost that changes over time. The initial
evel of mark-up 𝜇0 is crucial in governing the dynamics of growth and investment. In the model, mark-up level influences firm

profitability and, correspondingly, the propensity of the firm to rely on external source of financing for production and investment.
Moreover, higher mark-ups over unit cost of productions also influence income distribution by favouring profits over wages. As
aggregate consumption in the model is directly linked to total wages, higher mark-ups can dampen demand for final goods (Dosi
et al., 2013). We let the initial mark-up 𝜇0 vary between 0.2 and 0.3 (SM, Section 1.2). As higher (lower) mark-ups determine less
(more) dependence of external finance, the well-functioning and the profitability of the banking sector can play a prominent role
in fuelling investments and by smoothing the volatility of internal flows of funds. This motivates calibration upon bank margins,
i.e. the mark-down for bank deposits 𝜇𝑑 𝑒𝑝 and the mark-down on bank reserves deposited at the Central Bank 𝜇𝑟𝑒𝑠. We vary 𝜇𝑑 𝑒𝑝
between 0.75 and 1 and 𝜇𝑟𝑒𝑠 between 0.5 and 0.9 (SM, Section 1.4).

Although we keep fixed some parameters, the strategic relevance of the chosen parameters in affecting the properties of the
odel is proved by the substantial number of experiments that have been conducted for exploring the relationship between economic

rowth and business cycle fluctuations.
Once the parameters are defined, we draw 𝑚0 = 200 CoPs using Quasi Monte Carlo with sampling based on Sobol’ sequence

QMCS). Although other sampling methods are possible (e.g., Monte Carlo with pseudo-random numbers and Latin Hypercube
ampling), we decide to exploit QMCS as it gives a better way of arranging points in high-dimensional spaces than standard Monte

Carlo methods and standard Latin Hypercube Sampling, having the advantage of a safer rate of convergence (Kucherenko et al., 2015,
p. 10). According to Sobol’ (1967), QMCS is convenient for many reasons: (i) it allows to reach the best uniformity of distribution
as the number of points in the parameter space 𝑁 → ∞; (ii) it has a good distribution also for small initial sets; (iii) it is very
fast in terms of computation time, as its rate of convergence is close to 𝑂 (

𝑁−1), as opposed to Monte Carlo techniques, where the
convergence rate is of 𝑂

(

𝑁−1∕2).7
The appropriate number of Monte Carlo runs for each CoP can be determined following the power analysis for ANOVA described

n Secchi and Seri (2017) and Seri and Secchi (2017). To proceed with the power analysis, we must consider two features: the number
of CoPs and the effect size 𝑓 . Given 𝑚0 = 200, we choose the values of the significance level 𝛼 (the probability of rejecting the null
hypothesis when it is true) and the power of test 1 −𝛽 (the probability of rejecting the null when it is false). The value of 1 −𝛽 depends
on 𝑓 , which measures the ability to discern between the null and the alternative hypothesis (see, e.g., Cohen, 1988). Generally, the
effect size can have different impacts: small= 0.1, medium= 0.25 and large= 0.4. In order to be conservative, and in line with the
literature (see Secchi and Seri, 2017), we consider 𝛼 = 0.01, 1 − 𝛽 = 0.95 and 𝑓 = 0.1. These values lead to an optimal number of

onte Carlo runs 𝑛 = 46 per configuration, for a total of 𝑛×𝑚0 = 9200 runs. However, to reduce as much as possible the effect of the
odel’s stochasticity, we simulate the ABM 𝑛 = 200 times for each CoP. Therefore, the total number of Monte Carlo runs considered

n the exercise is 𝑛 × 𝑚0 = 40000.
We generate 𝑇 = 500 synthetic observations for each Monte Carlo run and we delete the first 105 observations to remove the

transients. Therefore, the final sample size is 𝑇 = 395. We then inspect the parameter space to check whether some simulated time
series provide unexpected values (e.g., ‘‘N/A’’, ‘‘NaN’’, ‘‘-Inf’’, ‘‘Inf’’, etc.). However, we do not encounter such cases.

The actual data we use for calibration and validation are U.S. data. We rely on two different sources. We draw the macroeconomic
variables (i.e., GDP, consumption, investments, unemployment rate, and CPI) from the FRED-QD Database of the Federal Reserve
Bank of St. Louis (McCracken and Ng, 2020), and the energy variables (i.e., total energy consumption and total Carbon Dioxide
emissions) from the U.S. Energy Information Administration.8 We take logs of all variables except for the unemployment rate. A
escription of the empirical dataset is provided in Table 6.2.

All the variables are on quarterly basis and the time series go from 1973:Q1 to 2021:Q1, for a total of 𝜏 = 193 observations.9

7 In Section 3 of the Supplementary Material we investigate the space-filling and orthogonality properties of the initial set of CoPs 0.
8 Macroeconomic variables are downloaded from: https://research.stlouisfed.org/econ/mccracken/fred-databases/, total energy consumption are downloaded

from: https://www.eia.gov/totalenergy/data/monthly/index.php, and total Carbon Dioxide emissions from energy consumption are downloaded from: https:
//www.eia.gov/environment/.

9 Energy variables are available either on yearly or monthly basis, therefore we compute the quarterly data summing up the monthly values in each quarter.
9 

https://research.stlouisfed.org/econ/mccracken/fred-databases/
https://www.eia.gov/totalenergy/data/monthly/index.php
https://www.eia.gov/environment/
https://www.eia.gov/environment/
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Table 6.2
Empirical dataset.

Variable Unity of measure Description

GDP Billions of chained 2012 Dollars Real Gross Domestic Product
Consumption Billions of chained 2012 Dollars Real personal consumption expenditures
Investment Billions of chained 2012 Dollars Real Gross Private Domestic Investment
Unemp rate Percent Civilian Unemployment Rate
CPI Index 1982 − 84 = 100 Consumer Price Index for all consumers
Energy Trillion Btu Total energy consumption
Emissions Million Metric Tons of CO2 Total Carbon Dioxide emissions

We start by fitting a reduced-form VAR model on the actual data, selecting the number of lags with the Akaike Information
Criteria (AIC). Then, we perform the Ljung–Box test to check whether the VAR residuals are uncorrelated. For all the variables
considered in the empirical application, we cannot reject the null hypothesis of uncorrelatedness. In light of this, we fit a VAR(2)

odel in levels on both the actual data and the simulated time series. Imposing the same number of lags on both VAR models
guarantees coherence in the calibration step.

As explained in Section 4.1, the estimation of the matrices �̂� 0 and �̂� 𝑗 ,0
(

𝜃𝑖
)

is achieved via fastICA from the estimated reduced-
form residuals �̂�𝑡 and �̂�𝑗 𝑡

(

𝜃𝑖
)

. On these residuals, we perform the Jarque–Bera test. The hypothesis of normality is rejected both
for actual data and (in the vast majority of cases) for simulated data. Hence, we conclude in favour of non-Gaussianity. We then
compute MDI for each Monte Carlo run of each CoP and we take the mean across Monte Carlo runs:

𝐷
(200)
𝑖 = 1

200

200
∑

𝑗=1

√

t r
[

(

𝐂𝑗 𝑖�̂�
−1
𝑗 ,0

(

𝜃𝑖
)

�̂� 0 − 𝐈𝐾
) (

𝐂𝑗 𝑖�̂�
−1
𝑗 ,0

(

𝜃𝑖
)

�̂� 0 − 𝐈𝐾
)′]

, (6.1)

for 𝑖 = 1,… , 200.
We then use the MDI as input for the MCS. We select only CoPs that pass the testing procedure, so we discard CoPs with 𝑝-value

< 0.05. In Table 6.3, we report the order of elimination of the CoPs, the 𝑝-values of the test procedure, the MCS 𝑝-values and
the sample average distances 𝐷

(200)
𝑖 for the contemporaneous causal structures. CoPs are ranked according to their 𝑝-values; these

𝑝-values measure the likelihood of the simulated causal structures with respect to the ones embodied in the real-world data. For
readability, we report only the first ten (the last ten) eliminated CoPs. The only configuration selected for the validation procedure is
CoP 35. The fact that the MCS procedure selects a single CoP (the ‘‘best’’ model) suggests that, as pointed out by Hansen et al. (2011,
p. 454), the actual data used in our application are very informative. This warrants the reliability of our data-driven approach. The
values of the parameters associated to CoP 35 are reported in Table 6.4. If compared with the baseline parametrization in Lamperti
et al. (2019a), CoP 35 suggests that, in order to better match the contemporaneous causal structure embedded in the model: (i)
bank profitability margins should be tighter (𝜇𝑑 𝑒𝑝, 𝜇𝑟𝑒𝑠)10; (ii) firms’ capabilities in innovative activities are stronger because 𝜁1,2 are
higher and the support upon which innovation-driven productivity shocks are drawn (𝑥 and 𝑥) is larger; (iii) on the other hand, in
he energy sector the same support is very close to the baseline specification (𝑥en, 𝑥en); (iv) finally, the payback parameter 𝑏 seems

to be slightly lower than for the baseline calibration, suggesting that firms are willing to replace their old machineries more often.
In the validation step of our protocol (steps 6 and 7 in Section 2), we measure the goodness-of-match of the shocks-variables

structure embodied in CoP 35, with respect to the actual shocks-variables structure. In so doing, we test the significance of the
coefficients of the matrix �̂� 0, using bootstrap, and the significance of the entries of the matrix �̂� 𝑗 ,0

(

𝜃35
)

, relying on the distributions
of the Monte Carlo runs. Then, we infer ICR for both the simulated and the actual causal structures. The ICRr w and ICRsim are reported
in Table 6.5. To simplify the notation, we write 𝜀𝑘𝑠 ,𝑡 = 𝜀𝑘𝑠 , with 𝑘𝑠 = 1,… , 7.

The analysis of the ICRs provides the following outcomes: (i) as regards the ICRr w, 𝜀1 has a significant (contemporaneous) impact
n investment, 𝜀2 has an impact on GDP, consumption, investment, unemployment rate, demand of energy and emissions, 𝜀3 on
DP, investment, unemployment rate, demand of energy and emissions, 𝜀4 and 𝜀5 impact only on investment, and 𝜀7 has an impact
n the demand of energy and emissions; (ii) as regards the ICRsim, 𝜀1 influences investment, 𝜀2 has an impact on investment, 𝜀3
mpacts consumption, investment and unemployment rate, 𝜀6 hits investment and 𝜀7 has an impact on investment and demand of
nergy emissions; (iii) the validation measure VM = 1 − 14∕49 = 0.714, therefore, the simulated model is able to recover the 71.4%
f the real-world shocks-variables structures.11

It is worth noting that CoP 35 is the ‘‘best’’ configuration across different SVAR specifications, confirming the robustness of the
alibration exercise (see Appendix D, Table D.3). When focusing on the identified and statistically significant causal relationships,
he model delivers a lower performance in matching the emerging shocks-variable structure regarding GDP, CPI and Emissions at
he macro-level. However, a set of shocks hitting energy and investment is consistently identified in both the simulated model and

10 Lamperti et al. (2019a) do not report a baseline value for the parameters affecting bank margins (see Supplementary Information, Section D, Table 2
therein). We retrieved the parameters from the original code. These two parameters play an important role on the banks profitability margins and thus on the
capacity of the banking sector to steadily fuel investments. Accordingly, we decided a range for 𝜇𝑟𝑒𝑠 and 𝜇𝑑 𝑒𝑝 that we think is more representative of the interest
rate structure.

11 Inference conducted on ICRr w and ICRsim reveals that many coefficients are not statistically different from zero, leading to a contemporaneous impact matrix
that is sparse. Despite the relatively high score of the validation measure is driven by the ‘‘common absence’’ of statistically relevant causal ties, the validation
measure VM provides, in a theory-agnostic manner, a relevant informational content.
10 
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Table 6.3
Order of elimination of the different CoPs with 𝑝-values and sample average
distances.

𝑘 𝑒𝑘
𝑝-value of 𝛿𝑘

(𝑝𝖧0,𝑘
) MCS 𝑝-value (𝑝𝑒𝑘

) 𝐷
(200)
𝑖

1 108 0.0000 0.00000 0.5037
2 44 0.0000 0.00000 0.4993
3 112 0.0000 0.00000 0.4960
4 166 0.0000 0.00000 0.4945
5 188 0.0000 0.00000 0.4922
6 48 0.0000 0.00000 0.4857
7 199 0.0000 0.00000 0.4851
8 129 0.0000 0.00000 0.4816
9 13 0.0000 0.00000 0.4732
10 20 0.0000 0.00000 0.4652
⋮ ⋮ ⋮ ⋮ ⋮
191 159 0.00000 0.00000 0.0313
192 63 0.00000 0.00000 0.0312
193 65 0.00000 0.00000 0.0311
194 195 0.00000 0.00000 0.0310
195 133 0.00000 0.00000 0.0302
196 27 0.00011 4.69e-05 0.0301
197 179 0.00012 0.00011 0.0286
198 99 4.69e-05 0.00012 0.0284
199 139 0.00015 0.00015 0.0275
200 35 1.00000 1.00000 0.0268

The shaded area identifies the selected CoP.

Table 6.4
CoP 35 values compared to baseline in Lamperti et al. (2019a).

Empirical calibration

Parameter CoP 35 Baseline

𝜇0 0.2875 0.28
𝜇𝑑 𝑒𝑝 0.8669 1
𝜇𝑟𝑒𝑠 0.5525 0.33
𝜁1,2 0.7597 0.3
𝑥 −0.1417 −0.08
𝑥 0.1417 0.08
𝑥en −0.0566 −0.058
𝑥en 0.0566 0.058
𝑏 2.59 3

Table 6.5
Independent Component Representation from actual data (left) and simulated data associated to CoP 35 (right).

ICRr w ICRsim

𝜀1 𝜀2 𝜀3 𝜀4 𝜀5 𝜀6 𝜀7 𝜀1 𝜀2 𝜀3 𝜀4 𝜀5 𝜀6 𝜀7
𝐺 𝐷 𝑃 0 1 1 0 0 0 0 𝐺 𝐷 𝑃 0 0 0 0 0 0 0
𝐶 𝑜𝑛𝑠 0 1 0 0 0 0 0 𝐶 𝑜𝑛𝑠 0 0 1 0 0 0 0
𝐼 𝑛𝑣 1 1 1 1 1 0 0 𝐼 𝑛𝑣 1 1 1 0 0 1 1
𝑈 𝑅 0 1 1 0 0 0 0 𝑈 𝑅 0 0 1 0 0 0 0
𝐶 𝑃 𝐼 0 0 0 0 0 0 0 𝐶 𝑃 𝐼 0 0 0 0 0 0 0
𝐸 𝑛𝑒𝑟 0 1 1 0 0 0 1 𝐸 𝑛𝑒𝑟 0 0 0 0 0 0 1
𝐸 𝑚𝑖𝑠𝑠 0 1 1 0 0 0 1 𝐸 𝑚𝑖𝑠𝑠 0 0 0 0 0 0 0

its empirical counterpart. As summarized in Appendix D, Table D.3, the same common shocks-variable structure is also identified
in lower-dimensional SVARs. This finding partially aligns with the modelling purpose of Lamperti et al. (2019a), more precisely in
replicating stylized facts on energy demand and CO2 emissions patterns that are consistent with the Shared Socioeconomic Pathway
 (SSP5, Riahi et al., 2017).

7. Conclusions

In this paper, we propose a new general protocol for calibration and validation of complex simulation models by searching
causal structures both from synthetic and actual data. The emphasis on causal search is linked to the importance that policy analysis,
specifically, the prediction of the effects of policy interventions, plays in macroeconomic simulation models. Our procedure combines
MCS and causal inference: first, we estimate reduced-form VAR models from both the data generated by a macroeconomic simulation

odel and a set of observed data, and we identify, through ICA, a vector of structural shocks and a mixing matrix; then, we compute
11 
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the MDI between, on the one hand, the mixing matrix associated to each CoP and Monte Carlo run and, on the other hand, the
mixing matrix estimated from real data, and we apply the MCS to the distribution of the MDIs to select the set of CoPs that best
approximate actual data; finally, for the selected CoP(s), we infer an ICR describing which shocks have a significant impact on the
variables, and we compare such ICR with the analogous ICR derived from the actual data.

We apply our method to the DSK model of Lamperti et al. (2019a). The results show that the MCS procedure based on the MDI
discriminates well among different CoPs (only CoP 35 passes the test). According to our validation measure, the best CoP turns out
to mimic the 71.4% of the shocks-variables structure underlying the actual data.

Our protocol can be seen as a complement and a generalization of other existing calibration and validation methods, for at least
three reasons: (i) it allows the researcher to rank causal structures associated to different CoPs of a simulation model from the
most to the least plausible according to a statistical measure; (ii) it is faster than other procedures based on the optimization of an
objective function or the exploration of the parameter space; (iii) it applies both to calibration and validation.

Further developments are possible. First, one can replace the minimum-distance index with another metric which accounts for
the long-run dynamics of the macroeconomic variables. Second, SVARs can be estimated through Vector Error Correction Models
to account for potential cointegration among the variables. More in general, causal structures between shocks and variables can be
estimated by econometric time series models that relax many features of the standard linear VAR model.
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Appendix A. The ICA model and fastICA

In this section, we detail the assumptions and theoretical background underlying the ICA model and the fastICA estimator.
Given that 𝐮𝑡 = 𝜳 0𝜺𝑡 ⟺ 𝜺𝑡 = 𝜞 0𝐮𝑡 (with 𝜞 −1

0 = 𝜳 0), the ICA model recovers, up to scale and order indeterminacy, 𝜞 0 (𝜳 0)
and 𝜺𝑡 from realizations of 𝐮𝑡 under the following assumptions (see, e.g., Hyvärinen et al., 2001 and Hyvärinen, 2013):

Assumption 1.
(i) The components 𝜺𝑡 are statistically independent;
(ii) The components 𝜺𝑡 are non-Gaussian with at most one exception;
(iii) The matrix 𝜳 0 is invertible.
The fastICA estimator is a fixed-point algorithm that relies on the maximization of the non-Gaussianity of 𝜸′𝑘𝐮𝑡, for each

𝑘 = 1,… , 𝐾, where 𝜸′𝑘 is the 𝑘th row of the matrix 𝜞 0 (see Hyvärinen, 1999). Without loss of generality, in the following we
will write 𝜸′ instead of 𝜸′𝑘.

The non-Gaussianity is measured using negentropy, which relies on the notion of entropy. In statistics and social sciences, entropy
represents the amount of uncertainty associated with a probability distribution or, simpler, the loss of information deriving by using
a model to approximate reality. More in general, entropy is a measure of disorder or uncertainty (see, e.g., Seri and Martinoli, 2021).
Let 𝐲 be a continuous random vector, the differential entropy (Shannon, 1948) is defined as follows:

𝐻 (𝐲) = −∫ 𝑓 (𝐲) log 𝑓 (𝐲) d𝐲, (A.1)

where 𝑓 (⋅) is the probability density function. The differential entropy can be used to quantify the degree of non-Gaussianity. This
omes from the fact that a Gaussian variable has the largest entropy among all random variables of equal variance (see, e.g., Cover

and Thomas, 1991).
Given a Gaussian vector 𝐱 with the same covariance matrix of 𝐲, we can define negentropy as follows:

𝐽 (𝐲) = 𝐻 (𝐱) −𝐻 (𝐲) . (A.2)

If both 𝐻 (𝐱) and 𝐻 (𝐲) are Gaussian, it follows that 𝐽 (𝐲) = 0. Moreover, according to the fact that 𝐻 (𝐱) has the maximum entropy,
(𝐲) is always positive. For these reasons, negentropy is one of the most natural index to measure non-Gaussianity.

Since estimation of (neg)entropy from the data can be difficult, as it involves the nonparametric estimation of 𝑓 (⋅), the fastICA
algorithm exploits the following approximation:

𝐽 (𝐲) ≈
[

E (𝐺 (𝐲)) − E (𝐺 (𝐳))
]2 , (A.3)

where 𝐺 (⋅) is a specific nonquadratic function of a random variable, i.e. 𝐺 (𝑧) = − exp (𝑧2∕2) with 𝑧 ∼  (0, 1). The approximation
evised in Eq. (A.3) drastically reduces the computational time to find ICA projections (see Issoglio et al., 2021, for a discussion).

Finally, we have the following estimator:

�̂� = ar g max
𝜸

E
[

𝐽
(

𝜸′𝐮𝑡
)]

. (A.4)

According to Hyvärinen et al. (2001), Eq. (A.4) is equivalent to the following maximization problem:

�̂� = ar g max
𝜸

E
[

𝐺
(

𝜸′𝐮𝑡
)]

, (A.5)

as both Eq. (A.4) and Eq. (A.5) have the same solution 𝜸. Let 𝑔 (⋅) be the first derivative of 𝐺 (⋅), the statistical properties of the
astICA estimator hold under the following assumptions:
12 
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Assumption 2.
(i) E

[

𝐮𝑡
]

= 0 and 𝐮𝑡 has all moments up to the fourth;
(ii) �̇� (⋅) and �̈� (⋅), i.e. the first and second derivatives of 𝑔 (⋅), satisfy Lipschitz continuity, which means that ∃𝛿1, 𝛿2 < ∞ such that

‖�̇�
(

𝐲1
)

− �̇�
(

𝐲2
)

‖ ≤ 𝛿1‖𝐲1 − 𝐲2‖ and ‖�̈�
(

𝐲1
)

− �̈�
(

𝐲2
)

‖ ≤ 𝛿2‖𝐲1 − 𝐲2‖;
(iii) �̈� (⋅) is bounded.
Assumption 2(i) is related to the fact that negentropy can be approximated by using higher-order moments, i.e. kurtosis

(see Hyvärinen, 1999). Assumption 2(ii) and (iii) are regularity conditions on the function 𝑔 (⋅) and its derivatives to perform the
maximization problem.

Therefore, it can be shown that, under Assumptions 1–2 and given the first-order conditions E
(

𝐮𝑡𝑔
(

𝜸′𝐮𝑡
))

= 𝟎 of the
maximization problem (A.5), the estimator �̂� = {𝜸 ∶ E

(

𝐮𝑡𝑔
(

𝜸′𝐮𝑡
)

= 𝟎
)

} is consistent and asymptotically normal (see Reyhani et al.,
2012), that is:

�̂� →Pr 𝜸, (A.6)
√

𝑇
(

�̂� − 𝜸
)

→  (𝟎,𝜴) , (A.7)

where 𝜴 is the positive-definite covariance matrix.
Notice that maximizing non-Gaussianity is strictly related to minimizing mutual statistical independence. This connection has

been shown by Hyvärinen and Oja (2000) who demonstrate that the most non-Gaussian directions 𝜸′𝐮𝑡 can be found by minimizing
the Kullback–Leibler divergence between the joint density 𝑓

(

𝜸′1𝐮𝑡,… , 𝜸′𝐾𝐮𝑡
)

and the product of the marginals 𝑓
(

𝜸′1𝐮𝑡
)

⋅… ⋅𝑓
(

𝜸′𝐾𝐮𝑡
)

.

Appendix B. MCS algorithm

The implementation of the MCS procedure follows the algorithm below:

1. start from the set 0 ∶=
{

1,… , 𝑚0
}

and test, with level 1 − 𝛼, that all the average distances are equal: if 𝑝𝑒1
> 𝛼, do not

reject 𝖧0, and the procedure is over; if 𝑝𝑒1
≤ 𝛼, reject 𝖧0, and go to step 2;

2. use the elimination rule 𝑒 = 𝑒0 to remove one CoP from 0, getting 1 ∶=
{

1,… , 𝑚0 − 1};
3. test, with level 1 − 𝛼, that all the average distances associated with 𝑖 ∈ 1 are equal; again, if the 𝑝𝑒2

> 𝛼, do not reject
the null hypothesis and the procedure is over; if the 𝑝𝑒2

≤ 𝛼 reject the null hypothesis, use again the elimination rule, and
perform the test with 𝑖 ∈

{

1,… , 𝑚0 − 2};
4. the procedure continues until the null hypothesis is not rejected. The final set of CoPs is defined as ̂∗.

Fig. C.1. Plots of the real-world vs. simulated variables obtained with CoP 35.
13 
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Appendix C. Behaviour of the validated simulated variables

Fig. C.1 represents the behaviour of the real-world (upper plots) and the simulated variables (bottom plots) considered in the
analysis, obtained with the validated configuration.

Appendix D. Robustness checks

We compute the MCS at 95% for different SVAR models, to investigate whether the calibration procedure is robust across different
pecifications. To do that, we estimate four different SVAR models, for both simulated and actual data, which we call SVAR1, SVAR2,
VAR3 and SVAR4. The composition of these SVAR models is reported in Table D.1.

Table D.1
SVARs specifications.
Model Variables

SVAR1 𝐺 𝐷 𝑃 , 𝐼 𝑛𝑣, 𝐸 𝑛𝑒𝑟
SVAR2 𝐺 𝐷 𝑃 , 𝐼 𝑛𝑣, 𝐸 𝑛𝑒𝑟, 𝐸 𝑚𝑖𝑠𝑠
SVAR3 𝐺 𝐷 𝑃 , 𝐼 𝑛𝑣, 𝐶 𝑃 𝐼 , 𝐸 𝑛𝑒𝑟
SVAR4 𝐺 𝐷 𝑃 , 𝐶 𝑜𝑛𝑠, 𝐼 𝑛𝑣, 𝐶 𝑃 𝐼 , 𝐸 𝑛𝑒𝑟

The outcomes of the MCS at 95% (the order of elimination of the CoPs, the MCS 𝑝-values and the sample average distances) for
SVAR1, SVAR2, SVAR3 and SVAR4 are reported in Table D.2 (for readability, we show only the first ten and the last ten eliminated

oPs).
Table D.2
Order of elimination of the CoPs of the different SVAR models with MCS 𝑝-values and sample average distances.

SVAR1 SVAR2 SVAR3 SVAR4

𝑘 𝑒𝑘
𝑝𝑒𝑘

𝐷
(200)
𝑖 𝑒𝑘

𝑝𝑒𝑘
𝐷

(200)
𝑖 𝑒𝑘

𝑝𝑒𝑘
𝐷

(200)
𝑖 𝑒𝑘

𝑝𝑒𝑘
𝐷

(200)
𝑖

1 108 0.0000 1.2174 108 0.0000 0.8969 108 0.0000 0.8922 108 0.0000 0.7143
2 44 0.0000 1.2119 44 0.0000 0.8922 44 0.0000 0.8874 44 0.0000 0.7095
3 112 0.0000 1.2030 112 0.0000 0.8867 112 0.0000 0.8823 112 0.0000 0.7053
4 166 0.0000 1.2019 188 0.0000 0.8858 166 0.0000 0.8806 166 0.0000 0.7030
5 188 0.0000 1.2014 166 0.0000 0.8843 188 0.0000 0.8787 188 0.0000 0.6992
6 199 0.0000 1.1821 199 0.0000 0.8714 199 0.0000 0.8655 48 0.0000 0.6904
7 48 0.0000 1.1754 48 0.0000 0.8671 48 0.0000 0.8633 199 0.0000 0.6891
8 129 0.0000 1.1659 129 0.0000 0.8597 129 0.0000 0.8549 129 0.0000 0.6841
9 13 0.0000 1.1579 13 0.0000 0.8529 13 0.0000 0.8474 13 0.0000 0.6724
10 20 0.0000 1.1328 20 0.0000 0.8338 20 0.0000 0.8288 20 0.0000 0.6611
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
191 159 0.0000 0.0809 159 0.0000 0.0554 159 0.0000 0.0541 65 0.0000 0.0458
192 63 0.0000 0.0806 65 0.0000 0.0548 65 0.0000 0.0536 63 0.0000 0.0457
193 65 0.0000 0.0796 195 0.0000 0.0546 195 0.0000 0.0533 159 0.0000 0.0453
194 195 0.0000 0.0779 133 0.0000 0.0543 133 0.0000 0.0530 195 0.0000 0.0444
195 133 0.0000 0.0776 63 0.0000 0.0539 63 0.0000 0.0529 133 0.0000 0.0441
196 27 0.0004 0.0756 27 1.6e-08 0.0533 27 2.5e-06 0.0521 27 5.9e-06 0.0432
197 99 0.0005 0.0736 99 5.7e-08 0.0499 99 2.8e-06 0.0489 99 6.8e-06 0.0410
198 179 0.0027 0.0716 179 5.9e-08 0.0498 179 3.1e-06 0.0486 179 6.8e-06 0.0408
199 139 0.0098 0.0708 139 1.6e-07 0.0488 139 1.5e-05 0.0475 139 3.1e-05 0.0399
200 35 1.0000 0.0690 35 1.0000 0.0470 35 1.0000 0.0459 35 1.0000 0.0386

The shaded area highlights the selected configurations, for each SVAR model, with their corresponding MCS 𝑝-values
and sample average distances.

All these SVAR specifications highlight a common finding; the theoretical model identifies the same set of common shocks hitting
the investment and energy variable. To this extent, the model seems to match quite accurately the empirical structure found in U.S
ata that link energy demand to investment dynamics. In Table D.3, we report the validation measures and the shocks-variables

structures common to both simulated and actual data, for all the SVAR specifications.

Table D.3
Validation measures and common shocks-variables structures for different SVAR specifications.
Model VM Shocks-variables structures

SVAR1 0.56 𝜀1 → 𝐼 𝑛𝑣, 𝜀2 → 𝐼 𝑛𝑣, 𝜀3 → 𝐸 𝑛𝑒𝑟
SVAR2 0.63 𝜀1 → 𝐼 𝑛𝑣, 𝜀2 → 𝐼 𝑛𝑣
SVAR3 0.75 𝜀1 → 𝐼 𝑛𝑣, 𝜀2 → 𝐼 𝑛𝑣
SVAR4 0.76 𝜀1 → 𝐼 𝑛𝑣, 𝜀2 → 𝐼 𝑛𝑣, 𝜀3 → 𝐼 𝑛𝑣

Appendix E. Moving-average representation and impulse response functions

Suppose to compare the structural impulse response matrices at different time horizons 𝓁 = 0,… , 𝐻 , then 𝐲𝑡 and 𝐳𝑗 𝑡
(

𝜃𝑖
)

must
e represented as a moving-average process.
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Fig. E.1. Plots of the real-world IRFs of SVAR2.

Fig. E.2. Plots of the simulated IRFs of SVAR2 obtained with CoP 35.

If the process 𝐲𝑡 is stable (i.e., det (𝐈𝐾 − 𝐀1𝑧 − ⋯ − 𝐀𝑃 𝑧𝑃 ) ≠ 0 ∀𝑧 ∈ C, |𝑧| ≤ 1), then 𝐲𝑡 admits a Wold moving-average (MA)
epresentation:

𝐲𝑡 =
∞
∑

𝓁=0
𝜱𝓁𝐮𝑡−𝓁 , (E.1)

where 𝜱0 = 𝐈𝐾 and 𝜱𝓁 =
∑𝓁
𝑑=1 𝜱𝓁−𝑑𝐀𝑑 . We can also write:

𝐲𝑡 =
∞
∑

𝓁=0
𝜳𝓁𝜺𝑡−𝓁 , (E.2)

where 𝜳𝓁 = 𝜱𝓁𝜞 −1
0 and, in particular, 𝜳 0 = 𝜞 −1

0 . The entries of the matrices 𝜳𝓁 , for 𝓁 = 0,… , 𝐻 , are referred in the literature as
he impulse response functions since 𝜓𝑑 𝑘,𝓁 = 𝜕 𝑦𝑑 ,𝑡+𝓁

𝜕 𝜀𝑘𝑡 , where 𝜓𝑑 𝑘,𝓁 is the (𝑑 , 𝑘) entry of 𝜳𝓁 .

If 𝐲𝑡 contains processes with unit roots, although the VAR model does not admit a Wold representation, the matrices 𝜱𝓁𝜞 −1
0 =

(
∑𝓁
𝑑=1 𝜱𝓁−𝑑𝐀𝑑 )𝜞 −1

0 still represent impulse response functions, which, however, may not approach zero for 𝓁 → ∞ (see Kilian and
Lütkepohl, 2017).
15 
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Analogous representations hold for data generated by the simulation model, therefore we can write:

𝐳𝑗 𝑡
(

𝜃𝑖
)

=
∞
∑

𝓁=0
𝜳 𝑗 ,𝓁

(

𝜃𝑖
)

𝜺𝑗 𝑡−𝓁
(

𝜃𝑖
)

. (E.3)

The impulse response functions for SVAR2, obtained using real-world data, are displayed in Fig. E.1, while the impulse response
functions for SVAR2, estimated using the data simulated from the model, are shown in Fig. E.2.

Appendix F. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jebo.2024.106786.

Data availability

We have shared the link to the data/code in the Supplementary Material.
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