: The design of prosthetic controllers by means of neurophysiological signals still poses a crucial challenge to bioengineers. State of the art of electromyographic (EMG) continuous pattern recognition controllers rely on the questionable assumption that repeated muscular contractions produce repeatable patterns of steady-state EMG signals. Conversely, we propose an algorithm that decodes wrist and hand movements by processing the signals that immediately follow the onset of contraction (i.e., the transient EMG). We collected EMG data from the forearms of 14 non-amputee and 5 transradial amputee participants while they performed wrist flexion/extension, pronation/supination, and four hand grasps (power, lateral, bi-digital, open). We firstly identified the combination of wrist and hand movements that yielded the best control performance for the same participant (intra-subject classification). Then, we assessed the ability of our algorithm to classify participant data that were not included in the training set (cross-subject classification). Our controller achieved a median accuracy of ~96% with non-amputees, while it achieved heterogeneous outcomes with amputees, with a median accuracy of ~89%. Importantly, for each amputee, it produced at least one acceptable combination of wrist-hand movements (i.e., with accuracy >85%). Regarding the cross-subject classifier, while our algorithm obtained promising results with non-amputees (accuracy up to ~80%), they were not as good with amputees (accuracy up to ~35%), possibly suggesting further assessments with domain-adaptation strategies. In general, our offline outcomes, together with a preliminary online assessment, support the hypothesis that the transient EMG decoding could represent a viable pattern recognition strategy, encouraging further online assessments.

Decoding of Multiple Wrist and Hand Movements Using a Transient EMG Classifier

D'Accolti, Daniele;Dejanovic, Katarina;Cappello, Leonardo;Mastinu, Enzo;Cipriani, Christian
2022-01-01

Abstract

: The design of prosthetic controllers by means of neurophysiological signals still poses a crucial challenge to bioengineers. State of the art of electromyographic (EMG) continuous pattern recognition controllers rely on the questionable assumption that repeated muscular contractions produce repeatable patterns of steady-state EMG signals. Conversely, we propose an algorithm that decodes wrist and hand movements by processing the signals that immediately follow the onset of contraction (i.e., the transient EMG). We collected EMG data from the forearms of 14 non-amputee and 5 transradial amputee participants while they performed wrist flexion/extension, pronation/supination, and four hand grasps (power, lateral, bi-digital, open). We firstly identified the combination of wrist and hand movements that yielded the best control performance for the same participant (intra-subject classification). Then, we assessed the ability of our algorithm to classify participant data that were not included in the training set (cross-subject classification). Our controller achieved a median accuracy of ~96% with non-amputees, while it achieved heterogeneous outcomes with amputees, with a median accuracy of ~89%. Importantly, for each amputee, it produced at least one acceptable combination of wrist-hand movements (i.e., with accuracy >85%). Regarding the cross-subject classifier, while our algorithm obtained promising results with non-amputees (accuracy up to ~80%), they were not as good with amputees (accuracy up to ~35%), possibly suggesting further assessments with domain-adaptation strategies. In general, our offline outcomes, together with a preliminary online assessment, support the hypothesis that the transient EMG decoding could represent a viable pattern recognition strategy, encouraging further online assessments.
2022
File in questo prodotto:
File Dimensione Formato  
Decoding_of_Multiple_Wrist_and_Hand_Movements_Using_a_Transient_EMG_Classifier.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Creative commons (selezionare)
Dimensione 1.87 MB
Formato Adobe PDF
1.87 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/555553
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
social impact