In this article, we explore alternative cutaneous haptic feedback for rendering modulation of the grasping force. The aim of the study was to reduce power requirements and in turn dimensions of the actuators, in wearable devices applied to virtual or teleoperated manipulation. This is critical in certain rehabilitation or training scenarios where haptics should not interfere with dexterity of the user. In the study, we experimented discrete, pulsed cutaneous force feedback and compared it with conventional continuous proportional feedback, in a virtual pick and place task. We made use of wearable thimbles based on voice coil actuators in order to provide high-quality, low-noise haptic feedback to the participants. The evaluation was performed on the basis of both objective measurements of task performance (measured virtual forces and correct ratio) and a questionnaire evaluating participants’ preferences for the different feedback conditions. On the basis of the obtained results, in the article, we discuss the possibility of providing high-frequency, discretized cutaneous feedback only, driven by modulation of the grasping force. The opportunity is to reduce volume and mass of the actuators and also to consider alternative design solutions, due to the different requirements in terms of static and high-frequency components of the output force.

Discrete Cutaneous Feedback for Reducing Dimensions of Wearable Haptic Devices

Leonardis D;Gabardi M;Barsotti M;Frisoli A
2022-01-01

Abstract

In this article, we explore alternative cutaneous haptic feedback for rendering modulation of the grasping force. The aim of the study was to reduce power requirements and in turn dimensions of the actuators, in wearable devices applied to virtual or teleoperated manipulation. This is critical in certain rehabilitation or training scenarios where haptics should not interfere with dexterity of the user. In the study, we experimented discrete, pulsed cutaneous force feedback and compared it with conventional continuous proportional feedback, in a virtual pick and place task. We made use of wearable thimbles based on voice coil actuators in order to provide high-quality, low-noise haptic feedback to the participants. The evaluation was performed on the basis of both objective measurements of task performance (measured virtual forces and correct ratio) and a questionnaire evaluating participants’ preferences for the different feedback conditions. On the basis of the obtained results, in the article, we discuss the possibility of providing high-frequency, discretized cutaneous feedback only, driven by modulation of the grasping force. The opportunity is to reduce volume and mass of the actuators and also to consider alternative design solutions, due to the different requirements in terms of static and high-frequency components of the output force.
2022
File in questo prodotto:
File Dimensione Formato  
frvir-03-820266.pdf

solo utenti autorizzati

Descrizione: Paper Open Access
Tipologia: Documento in Post-print/Accepted manuscript
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.92 MB
Formato Adobe PDF
1.92 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/544671
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact