Rare earth magnets are the elective choice when high magnetic field density is required and they are particularly intriguing for inclusion in implantable devices. A safe implantation of NdFeB magnets in muscles would enable the control of limb prostheses using a myokinetic interfacei.e., direct control of artificial limb movements by means of magnetic tracking of residual muscle contractions. However, myokinetic prosthesis control is prevented by NdFeB magnets poor biocompatibility, at present. Here we investigated three biocompatible materials as NdFeB magnet coating candidates, namely gold, titanium nitride and parylene C, which have not been analyzed in a systematic way for this purpose, so far.In vitrotesting in a tissue-mimicking environment and upon contact with C2C12 myoblasts enabled assessment of the superiority of parylene C coated magnets in terms of corrosion prevention and lack of cytotoxicity. In addition, parylene C coated magnets implanted in rabbit muscles for 28 days confirmed, both locally and systemically, their biocompatibility, with a lack of irritation and toxicity associated with the implant. These findings pave the way towards the development of implantable devices based on permanent magnets and of a new generation of limb prostheses.

Stability andin vivosafety of gold, titanium nitride and parylene C coatings on NdFeB magnets implanted in muscles towards a new generation of myokinetic prosthetic limbs

Iacovacci V.;Naselli I.;Salgarella A. R.;Clemente F.;Ricotti L.;Cipriani C.
2021-01-01

Abstract

Rare earth magnets are the elective choice when high magnetic field density is required and they are particularly intriguing for inclusion in implantable devices. A safe implantation of NdFeB magnets in muscles would enable the control of limb prostheses using a myokinetic interfacei.e., direct control of artificial limb movements by means of magnetic tracking of residual muscle contractions. However, myokinetic prosthesis control is prevented by NdFeB magnets poor biocompatibility, at present. Here we investigated three biocompatible materials as NdFeB magnet coating candidates, namely gold, titanium nitride and parylene C, which have not been analyzed in a systematic way for this purpose, so far.In vitrotesting in a tissue-mimicking environment and upon contact with C2C12 myoblasts enabled assessment of the superiority of parylene C coated magnets in terms of corrosion prevention and lack of cytotoxicity. In addition, parylene C coated magnets implanted in rabbit muscles for 28 days confirmed, both locally and systemically, their biocompatibility, with a lack of irritation and toxicity associated with the implant. These findings pave the way towards the development of implantable devices based on permanent magnets and of a new generation of limb prostheses.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/538530
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
social impact