Microspine grippers address a large variety of possible applications, especially in field robotics and manipulation in extreme environments. Predicting and modeling the gripper behavior remains a major challenge to this day. One of the most complex aspects of these predictions is how to model the spine to rock interaction of the spine tip with the local asperity. This paper proposes a single spine model, in order to fill the gap of knowledge in this specific field. A new model for the anchoring resistance of a single spine is proposed and discussed. The model is then applied to a simulation campaign. With the aid of simulations and analytic functions, we correlated performance characteristics of a spine with a set of quantitative, macroscopic variables related to the spine, the substrate and its usage. Eventually, this paper presents some experimental comparison tests and discusses traversal phenomena observed during the tests.

Simulation and Analysis of Microspines Interlocking Behavior on Rocky Surfaces: An In-Depth Study of the Isolated Spine

Iacoponi S.;Calisti M.;Laschi C.
2020-01-01

Abstract

Microspine grippers address a large variety of possible applications, especially in field robotics and manipulation in extreme environments. Predicting and modeling the gripper behavior remains a major challenge to this day. One of the most complex aspects of these predictions is how to model the spine to rock interaction of the spine tip with the local asperity. This paper proposes a single spine model, in order to fill the gap of knowledge in this specific field. A new model for the anchoring resistance of a single spine is proposed and discussed. The model is then applied to a simulation campaign. With the aid of simulations and analytic functions, we correlated performance characteristics of a spine with a set of quantitative, macroscopic variables related to the spine, the substrate and its usage. Eventually, this paper presents some experimental comparison tests and discusses traversal phenomena observed during the tests.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/536631
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
social impact