Gliomas are the most common intracranial tumors, featured by a high mortality rate. They represent about 28% of all primary central nervous system (CNS) tumors and 80% of all malignant brain tumors. Cytotoxic chemotherapy is one of the conventional treatments used for the treatment, but it often shows rather limited efficacy and severe side effects on healthy organs, due to the low selectivity of the therapy for malignant cells and to a limited access of the drug to the tumor site, caused by the presence of the Blood-Brain Barrier. In order to resolve these limitations, recently an Erythro-Magneto-HA-Virosome (EMHV) drug delivery system (DDS), remotely controllable through an externally applied magnetic field, has been proposed. To accurately localize the EMHV at the target area, a system able to generate an adequate magnetic field is necessary. In this framework, the objective of this paper was to design and develop a magnetic helmet for the localization of the proposed EMHV DDS in the brain area. The results demonstrated, through the implementation of therapeutic efficacy maps, that the magnetic helmet designed in the study is a potential promising magnetic generation system useful for studying the possible usability of the magnetic helmet in the treatment of glioma and possibly other CNS pathologies by EMHV DDS.

Design of an innovative platform for the treatment of cerebral tumors by means of erythro-magneto-HA-virosomes

Lucarini, Gioia;Ricotti, Leonardo;Menciassi, Arianna
2020-01-01

Abstract

Gliomas are the most common intracranial tumors, featured by a high mortality rate. They represent about 28% of all primary central nervous system (CNS) tumors and 80% of all malignant brain tumors. Cytotoxic chemotherapy is one of the conventional treatments used for the treatment, but it often shows rather limited efficacy and severe side effects on healthy organs, due to the low selectivity of the therapy for malignant cells and to a limited access of the drug to the tumor site, caused by the presence of the Blood-Brain Barrier. In order to resolve these limitations, recently an Erythro-Magneto-HA-Virosome (EMHV) drug delivery system (DDS), remotely controllable through an externally applied magnetic field, has been proposed. To accurately localize the EMHV at the target area, a system able to generate an adequate magnetic field is necessary. In this framework, the objective of this paper was to design and develop a magnetic helmet for the localization of the proposed EMHV DDS in the brain area. The results demonstrated, through the implementation of therapeutic efficacy maps, that the magnetic helmet designed in the study is a potential promising magnetic generation system useful for studying the possible usability of the magnetic helmet in the treatment of glioma and possibly other CNS pathologies by EMHV DDS.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/533378
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
social impact