For partial lower-limb exoskeletons, an accurate real-time estimation of the gait phase is paramount to provide timely and well-tailored assistance during gait. To this end, dedicated wearable sensors separate from the exoskeletons mechanical structure may be preferable because they are typically isolated from movement artifacts that often result from the transient dynamics of the physical human-robot interaction. Moreover, wearable sensors that do not require time-consuming calibration procedures are more easily acceptable by users. In this study a robotic hip orthosis was controlled using capacitive sensors placed in orthopedic cuffs on the shanks. The capacitive signals are zeroed after donning the cuffs and do not require any further calibration. The capacitive sensing-based controller was designed to perform online estimation of the gait cycle phase via adaptive oscillators, and to provide a phase-locked assistive torque. Two experimental activities were carried out to validate the effectiveness of the proposed control strategy. Experiments conducted with seven healthy subjects walking on a treadmill at different speeds demonstrated that the controller can estimate the gait phase with an average error of 4%, while also providing hip flexion assistance. Moreover, experiments carried out with four healthy subjects showed that the capacitive sensing-based controller could reduce the metabolic expenditure of subjects compared to the unassisted condition (mean ± SEM, -3.2% ± 1.1).

Controlling a robotic hip exoskeleton with noncontact capacitive sensors

Crea, Simona;Manca, Silvia;Parri, Andrea;Vitiello, Nicola;
2019-01-01

Abstract

For partial lower-limb exoskeletons, an accurate real-time estimation of the gait phase is paramount to provide timely and well-tailored assistance during gait. To this end, dedicated wearable sensors separate from the exoskeletons mechanical structure may be preferable because they are typically isolated from movement artifacts that often result from the transient dynamics of the physical human-robot interaction. Moreover, wearable sensors that do not require time-consuming calibration procedures are more easily acceptable by users. In this study a robotic hip orthosis was controlled using capacitive sensors placed in orthopedic cuffs on the shanks. The capacitive signals are zeroed after donning the cuffs and do not require any further calibration. The capacitive sensing-based controller was designed to perform online estimation of the gait cycle phase via adaptive oscillators, and to provide a phase-locked assistive torque. Two experimental activities were carried out to validate the effectiveness of the proposed control strategy. Experiments conducted with seven healthy subjects walking on a treadmill at different speeds demonstrated that the controller can estimate the gait phase with an average error of 4%, while also providing hip flexion assistance. Moreover, experiments carried out with four healthy subjects showed that the capacitive sensing-based controller could reduce the metabolic expenditure of subjects compared to the unassisted condition (mean ± SEM, -3.2% ± 1.1).
2019
File in questo prodotto:
File Dimensione Formato  
TMech.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Licenza non conosciuta
Dimensione 12.96 MB
Formato Adobe PDF
12.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/529634
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
social impact