State of art upper limb prostheses lack several degrees of freedom (DoF) and force the individuals to compensate for them by changing the motions of their arms and body. Such movements often yield to articulation injuries, nonetheless these could be prevented by adding DoFs, for instance, an articulated passive wrist. Available stiff or compliant wrists with passive flexion/extension and/or radial/ulnar deviation are sub-optimal solutions. Indeed, stiff wrists induce the individuals wearing them to perform exaggerated compensatory movements during the reaching phase while compliant wrists proved to be unpractical while manipulating heavy objects. Here we present a wrist capable of combining the benefits of stiff and compliant wrists. It is provided with two switchable levels of passive compliance that are automatically selected. The prototype was integrated in a body-powered hydraulic hand prosthesis and actuated using the same hydraulic circuit of the hand. Detailed analysis of the parameters that affect the compliance, the critical load and the performance of the prosthesis are presented.

A passive wrist with switchable stiffness for a body-powered hydraulically actuated hand prosthesis

Montagnani, Federico;Controzzi, Marco;Cipriani, Christian;
2017-01-01

Abstract

State of art upper limb prostheses lack several degrees of freedom (DoF) and force the individuals to compensate for them by changing the motions of their arms and body. Such movements often yield to articulation injuries, nonetheless these could be prevented by adding DoFs, for instance, an articulated passive wrist. Available stiff or compliant wrists with passive flexion/extension and/or radial/ulnar deviation are sub-optimal solutions. Indeed, stiff wrists induce the individuals wearing them to perform exaggerated compensatory movements during the reaching phase while compliant wrists proved to be unpractical while manipulating heavy objects. Here we present a wrist capable of combining the benefits of stiff and compliant wrists. It is provided with two switchable levels of passive compliance that are automatically selected. The prototype was integrated in a body-powered hydraulic hand prosthesis and actuated using the same hydraulic circuit of the hand. Detailed analysis of the parameters that affect the compliance, the critical load and the performance of the prosthesis are presented.
2017
9781538622964
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/520708
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
social impact