Purpose – This paper aims to propose an innovative kinematic control algorithm for redundant robotic manipulators. The algorithm takes advantage of a bio-inspired approach. Design/methodology/approach – A simplified two-degree-of-freedom model is presented to handle kinematic redundancy in the x-y plane; an extension to three-dimensional tracking tasks is presented as well. A set of sample trajectories was used to evaluate the performances of the proposed algorithm. Findings – The results from the simulations confirm the continuity and accuracy of generated joint profiles for given end-effector trajectories as well as algorithm robustness, singularity and self-collision avoidance. Originality/value – This paper shows how to control a redundant robotic arm by applying human upper arm-inspired concept of inter-joint dependency.
Bio-inspired kinematical control of redundant robotic manipulators
LEYLAVI SHOUSHTARI, ALI;MAZZOLENI, STEFANO;DARIO, Paolo
2016-01-01
Abstract
Purpose – This paper aims to propose an innovative kinematic control algorithm for redundant robotic manipulators. The algorithm takes advantage of a bio-inspired approach. Design/methodology/approach – A simplified two-degree-of-freedom model is presented to handle kinematic redundancy in the x-y plane; an extension to three-dimensional tracking tasks is presented as well. A set of sample trajectories was used to evaluate the performances of the proposed algorithm. Findings – The results from the simulations confirm the continuity and accuracy of generated joint profiles for given end-effector trajectories as well as algorithm robustness, singularity and self-collision avoidance. Originality/value – This paper shows how to control a redundant robotic arm by applying human upper arm-inspired concept of inter-joint dependency.File | Dimensione | Formato | |
---|---|---|---|
Mazzoleni_Asssembly_Automation_2016.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.