Problems with dominant advection, discontinuities, travelling features, or shape variations are widespread in computational mechanics. However, classical linear model reduction and interpolation methods typically fail to reproduce even relatively small parameter variations, making the reduced models inefficient and inaccurate. This work proposes a model order reduction approach based on the Radon Cumulative Distribution Transform (RCDT). We demonstrate numerically that this non-linear transformation can overcome some limitations of standard proper orthogonal decomposition (POD) reconstructions and is capable of interpolating accurately some advection-dominated phenomena, although it may introduce artefacts due to the discrete forward and inverse transform. The method is tested on various test cases coming from both manufactured examples and fluid dynamics problems.

A reduced-order model for advection-dominated problems based on the Radon Cumulative Distribution Transform

Stabile, Giovanni
;
2025-01-01

Abstract

Problems with dominant advection, discontinuities, travelling features, or shape variations are widespread in computational mechanics. However, classical linear model reduction and interpolation methods typically fail to reproduce even relatively small parameter variations, making the reduced models inefficient and inaccurate. This work proposes a model order reduction approach based on the Radon Cumulative Distribution Transform (RCDT). We demonstrate numerically that this non-linear transformation can overcome some limitations of standard proper orthogonal decomposition (POD) reconstructions and is capable of interpolating accurately some advection-dominated phenomena, although it may introduce artefacts due to the discrete forward and inverse transform. The method is tested on various test cases coming from both manufactured examples and fluid dynamics problems.
2025
File in questo prodotto:
File Dimensione Formato  
2025_article_ACOM.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Copyright dell'editore
Dimensione 3.22 MB
Formato Adobe PDF
3.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/576637
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact