Objective: Motor Imagery (MI)-based Brain-Computer Interfaces (BCIs) have been proposed for the rehabilitation of people with disabilities, being a big challenge their successful application to restore motor functions in individuals with Spinal Cord Injury (SCI). This work proposes an Electroencephalography (EEG) gait imagery-based BCI to promote motor recovery on the Lokomat platform, in order to allow a clinical intervention by acting simultaneously on both central and peripheral nervous mechanisms. Methods: As a novelty, our BCI system accurately discriminates gait imagery tasks during walking and further provides a multi-channel EEG-based Visual Neurofeedback (VNFB) linked to $\mu$ (8-12 Hz) and $\beta$ (15-20 Hz) rhythms around Cz. VNFB is carried out through a cluster analysis strategy-based Euclidean distance, where the weighted mean MI feature vector is used as a reference to teach individuals with SCI to modulate their cortical rhythms. Results: The developed BCI reached an average classification accuracy of 74.4%. In addition, feature analysis demonstrated a reduction in cluster variance after several sessions, whereas metrics associated with self-modulation indicated a greater distance between both classes: passive walking with gait MI and passive walking without MI. Conclusion: The results suggest that intervention with a gait MI-based BCI with VNFB may allow the individuals to appropriately modulate their rhythms of interest around Cz. Significance: This work contributes to the development of advanced systems for gait rehabilitation by integrating Machine Learning and neurofeedback techniques, to restore lower-limb functions of SCI individuals.
A Gait Imagery-Based Brain–Computer Interface With Visual Feedback for Spinal Cord Injury Rehabilitation on Lokomat
Blanco-Diaz, Cristian Felipe
Primo
;
2025-01-01
Abstract
Objective: Motor Imagery (MI)-based Brain-Computer Interfaces (BCIs) have been proposed for the rehabilitation of people with disabilities, being a big challenge their successful application to restore motor functions in individuals with Spinal Cord Injury (SCI). This work proposes an Electroencephalography (EEG) gait imagery-based BCI to promote motor recovery on the Lokomat platform, in order to allow a clinical intervention by acting simultaneously on both central and peripheral nervous mechanisms. Methods: As a novelty, our BCI system accurately discriminates gait imagery tasks during walking and further provides a multi-channel EEG-based Visual Neurofeedback (VNFB) linked to $\mu$ (8-12 Hz) and $\beta$ (15-20 Hz) rhythms around Cz. VNFB is carried out through a cluster analysis strategy-based Euclidean distance, where the weighted mean MI feature vector is used as a reference to teach individuals with SCI to modulate their cortical rhythms. Results: The developed BCI reached an average classification accuracy of 74.4%. In addition, feature analysis demonstrated a reduction in cluster variance after several sessions, whereas metrics associated with self-modulation indicated a greater distance between both classes: passive walking with gait MI and passive walking without MI. Conclusion: The results suggest that intervention with a gait MI-based BCI with VNFB may allow the individuals to appropriately modulate their rhythms of interest around Cz. Significance: This work contributes to the development of advanced systems for gait rehabilitation by integrating Machine Learning and neurofeedback techniques, to restore lower-limb functions of SCI individuals.File | Dimensione | Formato | |
---|---|---|---|
A_Gait_Imagery-Based_BrainComputer_Interface_With_Visual_Feedback_for_Spinal_Cord_Injury_Rehabilitation_on_Lokomat.pdf
non disponibili
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
Copyright dell'editore
Dimensione
5.22 MB
Formato
Adobe PDF
|
5.22 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.