Over the past decade, considerable steps have been made in designing wearable assistive devices that reduce the metabolic cost of walking. As the field continues to advance, a growing emphasis is extending to human running, driven by the goal of improving efficiency and reducing metabolic strain. In our study, we developed a portable active exosuit to support hip extension during endurance running. The exosuit, featuring custom linear actuators and a control system synchronous with the wearer's kinematics, initially underwent bench testing and, finally, a field evaluation with users running at their self-selected pace on an athletics track. Results from seven participants showed a significant reduction in the metabolic cost of transport when the exosuit was active. Specifically, we observed a 9.6% decrease with respect to the unpowered condition, with a 4.3% net saving compared to not wearing the device. Additionally, kinematic assessments revealed no alteration of the participants' motion after toe-off, indicating transparency to physiological movement pattern during hip flexion. These findings highlight the potential of the exosuit to enhance athletic performance, opening new possibilities for running assistance in real-world scenarios.
Design and Overground Testing of a Portable Hip Exosuit for Enhancing Running Efficiency
Ciaramella, Alessandro;Bagneschi, Tommaso;Frisoli, Antonio;
2024-01-01
Abstract
Over the past decade, considerable steps have been made in designing wearable assistive devices that reduce the metabolic cost of walking. As the field continues to advance, a growing emphasis is extending to human running, driven by the goal of improving efficiency and reducing metabolic strain. In our study, we developed a portable active exosuit to support hip extension during endurance running. The exosuit, featuring custom linear actuators and a control system synchronous with the wearer's kinematics, initially underwent bench testing and, finally, a field evaluation with users running at their self-selected pace on an athletics track. Results from seven participants showed a significant reduction in the metabolic cost of transport when the exosuit was active. Specifically, we observed a 9.6% decrease with respect to the unpowered condition, with a 4.3% net saving compared to not wearing the device. Additionally, kinematic assessments revealed no alteration of the participants' motion after toe-off, indicating transparency to physiological movement pattern during hip flexion. These findings highlight the potential of the exosuit to enhance athletic performance, opening new possibilities for running assistance in real-world scenarios.File | Dimensione | Formato | |
---|---|---|---|
Design_and_Overground_Testing_of_a_Portable_Hip_Exosuit_for_Enhancing_Running_Efficiency.pdf
non disponibili
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
Copyright dell'editore
Dimensione
4.16 MB
Formato
Adobe PDF
|
4.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.