The paper reports the characterization results of a 20 kW‐class magnetically shielded Hall thruster in three different configurations and operating with a centrally mounted cathode. The characterization was carried out at two different pumping speeds in SITAEL’s IV10 vacuum chamber, resulting in two different background pressure levels for each tested operating point. A linear behavior of discharge current and thrust values versus the anode mass flow rate was noticed for both pumping speeds levels and for all the three configurations. In addition, the thrust and discharge current values were always found to be lower at lower background pressure levels. From the performance levels, a preliminary estimate of the ingested mass flow rates was performed, and the values were then compared to a recently developed background flow model. The results suggested that, for this thruster and in the tested operating regimes, the change in performance due to background pressure could be ascribed not only to the ingestion of external mass flow coming from the chamber but also to other physical processes caused by the flux of residual background neutrals.
Background Pressure Effects on the Performance of a 20 kW Magnetically Shielded Hall Thruster Operating in Various Configurations
Ferrato, Eugenio;Andreussi, Tommaso
2021-01-01
Abstract
The paper reports the characterization results of a 20 kW‐class magnetically shielded Hall thruster in three different configurations and operating with a centrally mounted cathode. The characterization was carried out at two different pumping speeds in SITAEL’s IV10 vacuum chamber, resulting in two different background pressure levels for each tested operating point. A linear behavior of discharge current and thrust values versus the anode mass flow rate was noticed for both pumping speeds levels and for all the three configurations. In addition, the thrust and discharge current values were always found to be lower at lower background pressure levels. From the performance levels, a preliminary estimate of the ingested mass flow rates was performed, and the values were then compared to a recently developed background flow model. The results suggested that, for this thruster and in the tested operating regimes, the change in performance due to background pressure could be ascribed not only to the ingestion of external mass flow coming from the chamber but also to other physical processes caused by the flux of residual background neutrals.File | Dimensione | Formato | |
---|---|---|---|
Piragino-et-al-A8-2021.pdf
accesso aperto
Licenza:
Creative commons (selezionare)
Dimensione
4.22 MB
Formato
Adobe PDF
|
4.22 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.