The performance of optical devices can degrade because of aging and external causes like, for example, temperature variations. Such degradation might start with a low impact on the Quality of Transmission (QoT) of the supported lightpaths (soft-failure). However, it can degenerate into a hard-failure if the device itself is not repaired or replaced, or if an external cause responsible for the degradation is not properly addressed. In this work, we propose comparing the QoT measured in the transponders with the one estimated using a QoT tool. Those deviations can be explained by changes in the value of input parameters of the QoT model representing the optical devices, like noise figure in optical amplifiers and reduced Optical Signal to Noise Ratio in the Wavelength Selective Switches. By applying reverse engineering, the value of those modeling parameters can be estimated as a function of the observed QoT of the lightpaths. Experiments reveal high accuracy estimation of modeling parameters, and results obtained by simulation show large anticipation of soft-failure detection and localization, as well as accurate identification of degradations before they have a major impact on the network.

Soft-Failure Detection, Localization, Identification, and Severity Prediction by Estimating QoT Model Input Parameters

Sgambelluri A.;Cugini F.;
2021-01-01

Abstract

The performance of optical devices can degrade because of aging and external causes like, for example, temperature variations. Such degradation might start with a low impact on the Quality of Transmission (QoT) of the supported lightpaths (soft-failure). However, it can degenerate into a hard-failure if the device itself is not repaired or replaced, or if an external cause responsible for the degradation is not properly addressed. In this work, we propose comparing the QoT measured in the transponders with the one estimated using a QoT tool. Those deviations can be explained by changes in the value of input parameters of the QoT model representing the optical devices, like noise figure in optical amplifiers and reduced Optical Signal to Noise Ratio in the Wavelength Selective Switches. By applying reverse engineering, the value of those modeling parameters can be estimated as a function of the observed QoT of the lightpaths. Experiments reveal high accuracy estimation of modeling parameters, and results obtained by simulation show large anticipation of soft-failure detection and localization, as well as accurate identification of degradations before they have a major impact on the network.
2021
File in questo prodotto:
File Dimensione Formato  
Soft-Failure_Detection_Localization_Identification_and_Severity_Prediction_by_Estimating_QoT_Model_Input_Parameters.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Copyright dell'editore
Dimensione 2.89 MB
Formato Adobe PDF
2.89 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/572672
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
social impact