The information transmitted in the form of signals or images is often corrupted with noise. These noise elements can occur due to the relative motion, noisy channels, error in measurements, and environmental conditions (rain, fog, change in illumination, etc.) and result in the degradation of images acquired by a camera. In this paper, we address these issues, focusing mainly on the edges that correspond to the abrupt changes in the signal or images. Preserving these important structures, such as edges or transitions and textures, has significant theoretical importance. These image structures are important, more specifically, for visual perception. The most significant information about the structure of the image or type of the signal is often hidden inside these transitions. Therefore it is necessary to preserve them. This paper introduces a method to reduce noise and to preserve edges while performing Non-Destructive Testing (NDT). The method computes Lipschitz exponents of transitions to identify the level of discontinuity. Continuous wavelet transform-based multi-scale analysis highlights the modulus maxima of the respective transitions. Lipschitz values estimated from these maxima are used as a measure to preserve edges in the presence of noise. Experimental results show that the noisy data sample and smoothness-based heuristic approach in the spatial domain restored noise-free images while preserving edges.

Edge-Preserving Image Denoising Based on Lipschitz Estimation

Bushra Jalil
;
2021-01-01

Abstract

The information transmitted in the form of signals or images is often corrupted with noise. These noise elements can occur due to the relative motion, noisy channels, error in measurements, and environmental conditions (rain, fog, change in illumination, etc.) and result in the degradation of images acquired by a camera. In this paper, we address these issues, focusing mainly on the edges that correspond to the abrupt changes in the signal or images. Preserving these important structures, such as edges or transitions and textures, has significant theoretical importance. These image structures are important, more specifically, for visual perception. The most significant information about the structure of the image or type of the signal is often hidden inside these transitions. Therefore it is necessary to preserve them. This paper introduces a method to reduce noise and to preserve edges while performing Non-Destructive Testing (NDT). The method computes Lipschitz exponents of transitions to identify the level of discontinuity. Continuous wavelet transform-based multi-scale analysis highlights the modulus maxima of the respective transitions. Lipschitz values estimated from these maxima are used as a measure to preserve edges in the presence of noise. Experimental results show that the noisy data sample and smoothness-based heuristic approach in the spatial domain restored noise-free images while preserving edges.
2021
File in questo prodotto:
File Dimensione Formato  
applsci-11-05126-v2_compressed.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Copyright dell'editore
Dimensione 694.8 kB
Formato Adobe PDF
694.8 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/571836
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact