New sustainable strategies for preserving plants are crucial for tackling environmental challenges. Bioinspired soft and miniature machines have the potential to operate in forests and agricultural fields by adapting their morphology to plant organs like leaves. However, applications on leaf surfaces are limited due to the fragility and heterogeneity of leaves, and harsh outdoor conditions. Here, we exploit the strong shear-dependent leaf-attachment of the hook-climber Galium aparine to create miniature systems that enable precision anchoring to leaf tissues via multifunctional microhooks. We first study the anchoring forces of the microhooks and then fabricate a soft wireless multiparameter sensor to monitor the leaf proximity and degradable hooks for in-plant molecular delivery to the vascular tissues of the leaves. In addition, we use a soft robotic proof-of-concept demonstrator to highlight how our hooks enable ratchet-like motion on leaves. This research showcases opportunities for specifically designing multifunctional machines for targeted applications in plant ecosystems.
Plant-like hooked miniature machines for on-leaf sensing and delivery
Fiorello Isabella;Meder Fabian;Mondini Alessio;Sinibaldi Edoardo;Filippeschi Carlo;Tricinci Omar;Mazzolai Barbara
2021-01-01
Abstract
New sustainable strategies for preserving plants are crucial for tackling environmental challenges. Bioinspired soft and miniature machines have the potential to operate in forests and agricultural fields by adapting their morphology to plant organs like leaves. However, applications on leaf surfaces are limited due to the fragility and heterogeneity of leaves, and harsh outdoor conditions. Here, we exploit the strong shear-dependent leaf-attachment of the hook-climber Galium aparine to create miniature systems that enable precision anchoring to leaf tissues via multifunctional microhooks. We first study the anchoring forces of the microhooks and then fabricate a soft wireless multiparameter sensor to monitor the leaf proximity and degradable hooks for in-plant molecular delivery to the vascular tissues of the leaves. In addition, we use a soft robotic proof-of-concept demonstrator to highlight how our hooks enable ratchet-like motion on leaves. This research showcases opportunities for specifically designing multifunctional machines for targeted applications in plant ecosystems.File | Dimensione | Formato | |
---|---|---|---|
s43246-021-00208-0.pdf
accesso aperto
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
Creative commons (selezionare)
Dimensione
7.81 MB
Formato
Adobe PDF
|
7.81 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.