Background: Acrylamide-based bait has super water absorption making it highly attractive to subterranean termites that are lured by wood with high water content. This study investigated the control efficiency of these baits on subterranean termites. In particular, we evaluated the water-absorption capacity, attractiveness to subterranean termites, and control efficiency of these baits on subterranean termites through wooden blocks (Populus deltoides and three types of particleboards). Results: The results indicated a substantial water absorption capacity of acrylamide (70.6%; control: 14.8%) and a strong attraction for feeding subterranean termites (P. deltoides: 198 highest; 81 lowest subterranean termites individuals; combination of neem leaves and walnut shells: 168 highest; 36 lowest subterranean termites individuals). When acrylamide was combined with boric acid at the highest concentration, it resulted in the lowest wood consumption rates (P. deltoides: 24.1%; control: 63.8%, combination of neem leaves and walnut shells: 32.5%; control: 62.1%). Conclusions: In conclusion, this research supports the commercial viability of employing innovative acrylamide-based toxic baits and particleboards for subterranean termite management. © 2024 Society of Chemical Industry.

Novel acrylamide‐based baits for effective control of subterranean termites (Blattodea: Rhinotermitidae)

Romano, Donato;
2024-01-01

Abstract

Background: Acrylamide-based bait has super water absorption making it highly attractive to subterranean termites that are lured by wood with high water content. This study investigated the control efficiency of these baits on subterranean termites. In particular, we evaluated the water-absorption capacity, attractiveness to subterranean termites, and control efficiency of these baits on subterranean termites through wooden blocks (Populus deltoides and three types of particleboards). Results: The results indicated a substantial water absorption capacity of acrylamide (70.6%; control: 14.8%) and a strong attraction for feeding subterranean termites (P. deltoides: 198 highest; 81 lowest subterranean termites individuals; combination of neem leaves and walnut shells: 168 highest; 36 lowest subterranean termites individuals). When acrylamide was combined with boric acid at the highest concentration, it resulted in the lowest wood consumption rates (P. deltoides: 24.1%; control: 63.8%, combination of neem leaves and walnut shells: 32.5%; control: 62.1%). Conclusions: In conclusion, this research supports the commercial viability of employing innovative acrylamide-based toxic baits and particleboards for subterranean termite management. © 2024 Society of Chemical Industry.
2024
File in questo prodotto:
File Dimensione Formato  
Abbas et al_Pest Management Science_2024.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Creative commons (selezionare)
Dimensione 5.48 MB
Formato Adobe PDF
5.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/568012
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact