We address the problem of compressing and indexing a sorted dictionary of strings to support efficient lookups and more sophisticated operations, such as prefix, predecessor, and range searches. This problem occurs as a key task in a plethora of applications, and thus it has been deeply investigated in the literature since the introduction of tries in the ’60s. We introduce a new data structure, called the COmpressed COllapsed Trie (CoCo-trie), that hinges on a pool of techniques to compress subtries (of arbitrary depth) into succinctly-encoded and efficiently-searchable trie macro-nodes with a possibly large fan-out. Then, we observe that the choice of the subtries to compress depends on the trie structure and its edge labels. Hence, we develop a data-aware optimisation approach that selects the best subtries to compress via the above pool of succinct encodings, with the overall goal of minimising the total space occupancy and still achieving efficient query time. We also investigate some variants of this approach that induce interesting space–time trade-offs in the CoCo-trie design. Our experimental evaluation on six diverse and large datasets (representing URLs, XML data, DNA and protein sequences, database records, and search-engine dictionaries) shows that the space–time performance of well-established and highly-engineered data structures solving this problem is very input-sensitive. Conversely, our CoCo-trie provides a robust and uniform improvement over all competitors for half of the datasets, and it results on the Pareto space–time frontier for the others, thus offering new competitive trade-offs.

CoCo-trie: Data-aware compression and indexing of strings

Ferragina, Paolo;
2024-01-01

Abstract

We address the problem of compressing and indexing a sorted dictionary of strings to support efficient lookups and more sophisticated operations, such as prefix, predecessor, and range searches. This problem occurs as a key task in a plethora of applications, and thus it has been deeply investigated in the literature since the introduction of tries in the ’60s. We introduce a new data structure, called the COmpressed COllapsed Trie (CoCo-trie), that hinges on a pool of techniques to compress subtries (of arbitrary depth) into succinctly-encoded and efficiently-searchable trie macro-nodes with a possibly large fan-out. Then, we observe that the choice of the subtries to compress depends on the trie structure and its edge labels. Hence, we develop a data-aware optimisation approach that selects the best subtries to compress via the above pool of succinct encodings, with the overall goal of minimising the total space occupancy and still achieving efficient query time. We also investigate some variants of this approach that induce interesting space–time trade-offs in the CoCo-trie design. Our experimental evaluation on six diverse and large datasets (representing URLs, XML data, DNA and protein sequences, database records, and search-engine dictionaries) shows that the space–time performance of well-established and highly-engineered data structures solving this problem is very input-sensitive. Conversely, our CoCo-trie provides a robust and uniform improvement over all competitors for half of the datasets, and it results on the Pareto space–time frontier for the others, thus offering new competitive trade-offs.
2024
File in questo prodotto:
File Dimensione Formato  
CoCo trie.pdf

non disponibili

Licenza: Copyright dell'editore
Dimensione 940.01 kB
Formato Adobe PDF
940.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/566752
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact