A parametric, hybrid reduced order method based on the Proper Orthogonal Decomposition with both Galerkin projection and interpolation based on Radial Basis Functions method is presented. This method is tested on a case of turbulent non-isothermal mixing in a T-junction pipe, a common flow arrangement found in nuclear reactor cooling systems. The reduced order model is derived from the 3D unsteady, incompressible Navier-Stokes equations weakly coupled with the energy equation. For high Reynolds numbers, the eddy viscosity and eddy diffusivity are incorporated into the Reduced Order Model with a Proper Orthogonal Decomposition (nested and standard) with Interpolation (PODI), where the interpolation is performed using Radial Basis Functions. The reduced order solver, obtained using a k−ω SST Unsteady Reynolds Averaged Navier-Stokes full order model, is tested against the full order solver in a 3D T-junction pipe with parameterised velocity inlet boundary conditions.

A hybrid reduced order method for modelling turbulent heat transfer problems

Stabile G.;
2020-01-01

Abstract

A parametric, hybrid reduced order method based on the Proper Orthogonal Decomposition with both Galerkin projection and interpolation based on Radial Basis Functions method is presented. This method is tested on a case of turbulent non-isothermal mixing in a T-junction pipe, a common flow arrangement found in nuclear reactor cooling systems. The reduced order model is derived from the 3D unsteady, incompressible Navier-Stokes equations weakly coupled with the energy equation. For high Reynolds numbers, the eddy viscosity and eddy diffusivity are incorporated into the Reduced Order Model with a Proper Orthogonal Decomposition (nested and standard) with Interpolation (PODI), where the interpolation is performed using Radial Basis Functions. The reduced order solver, obtained using a k−ω SST Unsteady Reynolds Averaged Navier-Stokes full order model, is tested against the full order solver in a 3D T-junction pipe with parameterised velocity inlet boundary conditions.
2020
File in questo prodotto:
File Dimensione Formato  
2020_1_article_C&F.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Copyright dell'editore
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/565098
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
social impact