: Neuroprosthetic devices used for the treatment of lower urinary tract dysfunction, such as incontinence or urinary retention, apply a pre-set continuous, open-loop stimulation paradigm, which can cause voiding dysfunctions due to neural adaptation. In the literature, conditional, closed-loop stimulation paradigms have been shown to increase bladder capacity and voiding efficacy compared to continuous stimulation. Current limitations to the implementation of the closed-loop stimulation paradigm include the lack of robust and real-time decoding strategies for the bladder fullness state. We recorded intraneural pudendal nerve signals in five anesthetized pigs. Three bladder-filling states, corresponding to empty, full, and micturition, were decoded using the Random Forest classifier. The decoding algorithm showed a mean balanced accuracy above 86.67% among the three classes for all five animals. Our approach could represent an important step toward the implementation of an adaptive real-time closed-loop stimulation protocol for pudendal nerve modulation, paving the way for the design of an assisted-as-needed neuroprosthesis.

Decoding bladder state from pudendal intraneural signals in pigs

Giannotti, A;Lo Vecchio, S;Pollina, L;Vallone, F;Strauss, I;Bernini, F;Gabisonia, K;Carlucci, L;Moccia, S;Micera, S
2023-01-01

Abstract

: Neuroprosthetic devices used for the treatment of lower urinary tract dysfunction, such as incontinence or urinary retention, apply a pre-set continuous, open-loop stimulation paradigm, which can cause voiding dysfunctions due to neural adaptation. In the literature, conditional, closed-loop stimulation paradigms have been shown to increase bladder capacity and voiding efficacy compared to continuous stimulation. Current limitations to the implementation of the closed-loop stimulation paradigm include the lack of robust and real-time decoding strategies for the bladder fullness state. We recorded intraneural pudendal nerve signals in five anesthetized pigs. Three bladder-filling states, corresponding to empty, full, and micturition, were decoded using the Random Forest classifier. The decoding algorithm showed a mean balanced accuracy above 86.67% among the three classes for all five animals. Our approach could represent an important step toward the implementation of an adaptive real-time closed-loop stimulation protocol for pudendal nerve modulation, paving the way for the design of an assisted-as-needed neuroprosthesis.
2023
File in questo prodotto:
File Dimensione Formato  
TYVphc-ABPID9-000007-046101_1.pdf

accesso aperto

Tipologia: PDF Editoriale
Licenza: Creative commons (selezionare)
Dimensione 3.34 MB
Formato Adobe PDF
3.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/560452
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
social impact