Purpose Plant microbial biostimulants, such as arbuscular mycorrhizal fungi (AMF), enhance nutrient concentration in fruits, including tomato. However, field studies on tomato AMF inoculation are scarce. AMF species belonging to Gigasporaceae and Glomeraceae families known to vary in life-history strategies may determine differential effects on plant nutrient benefits and residue decomposition. Despite this, the effect of different life-history strategies on nutrient acquisition of tomato fruits has not been investigated yet. Methods We studied the effect of inoculation of two tomato varieties with four AMF species belonging to Glomeraceae and Gigasporaceae. Fungal colonization, yield, fruit nutrient concentration, litter decomposition, and bacterial and fungal abundances in soil were assessed in the field under organic agriculture. Results Overall Gigasporaceae promoted the concentration of nutrients in tomato fruits compared to Glomeraceae. A variability in AM fungal colonization and fruit nutrient concentration was detected within Glomeraceae. Scutellospora pellucida increased the yield (+ 27%) of var. Rio Grande with respect to Gigaspora gigantea. In var. Rio Grande, inoculation with Funneliformis mosseae did not change litter decomposition as compared to non-inoculated controls, whereas it was lower than in Sclerocystis sinuosa and Gigasporaceae species, which showed the highest decomposition rates. AMF inoculation promoted soil total bacterial and fungal abundance and fungal:bacterial (F:B) ratio compared to controls, and members of Gigasporaceae had the highest F:B ratio. Conclusion These findings pointed at the inclusion of AM fungal life-history strategy within the selection criteria for the development of biofertilizers able to enhance the nutritional value of vegetables under organic farming systems.
Field inoculation by arbuscular mycorrhizal fungi with contrasting life-history strategies differently affects tomato nutrient uptake and residue decomposition dynamics
Arcidiacono M.;Pellegrino E.
;Nuti M.;Ercoli L.
2024-01-01
Abstract
Purpose Plant microbial biostimulants, such as arbuscular mycorrhizal fungi (AMF), enhance nutrient concentration in fruits, including tomato. However, field studies on tomato AMF inoculation are scarce. AMF species belonging to Gigasporaceae and Glomeraceae families known to vary in life-history strategies may determine differential effects on plant nutrient benefits and residue decomposition. Despite this, the effect of different life-history strategies on nutrient acquisition of tomato fruits has not been investigated yet. Methods We studied the effect of inoculation of two tomato varieties with four AMF species belonging to Glomeraceae and Gigasporaceae. Fungal colonization, yield, fruit nutrient concentration, litter decomposition, and bacterial and fungal abundances in soil were assessed in the field under organic agriculture. Results Overall Gigasporaceae promoted the concentration of nutrients in tomato fruits compared to Glomeraceae. A variability in AM fungal colonization and fruit nutrient concentration was detected within Glomeraceae. Scutellospora pellucida increased the yield (+ 27%) of var. Rio Grande with respect to Gigaspora gigantea. In var. Rio Grande, inoculation with Funneliformis mosseae did not change litter decomposition as compared to non-inoculated controls, whereas it was lower than in Sclerocystis sinuosa and Gigasporaceae species, which showed the highest decomposition rates. AMF inoculation promoted soil total bacterial and fungal abundance and fungal:bacterial (F:B) ratio compared to controls, and members of Gigasporaceae had the highest F:B ratio. Conclusion These findings pointed at the inclusion of AM fungal life-history strategy within the selection criteria for the development of biofertilizers able to enhance the nutritional value of vegetables under organic farming systems.File | Dimensione | Formato | |
---|---|---|---|
Arcidiacono et al_2024.pdf
accesso aperto
Descrizione: Manoscritto pubblicato
Tipologia:
PDF Editoriale
Licenza:
Dominio pubblico
Dimensione
3.33 MB
Formato
Adobe PDF
|
3.33 MB | Adobe PDF | Visualizza/Apri |
Arcidiacono et al. 2024_MOESM1_ESM.pdf
accesso aperto
Descrizione: Supplementary Materials
Tipologia:
PDF Editoriale
Licenza:
Dominio pubblico
Dimensione
1.62 MB
Formato
Adobe PDF
|
1.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.