Objective.Bioelectronic medicine is an emerging field that aims at developing closed-loop neuromodulation protocols for the autonomic nervous system (ANS) to treat a wide range of disorders. When designing a closed-loop protocol for real time modulation of the ANS, the computational execution time and the memory and power demands of the decoding step are important factors to consider. In the context of cardiovascular and respiratory diseases, these requirements may partially explain why closed-loop clinical neuromodulation protocols that adapt stimulation parameters on patient's clinical characteristics are currently missing.Approach.Here, we developed a lightweight learning-based decoder for the classification of cardiovascular and respiratory functional challenges from neural signals acquired through intraneural electrodes implanted in the cervical vagus nerve (VN) of five anaesthetized pigs. Our algorithm is based on signal temporal windowing, nine handcrafted features, and random forest (RF) model for classification. Temporal windowing ranging from 50 ms to 1 s, compatible in duration with cardio-respiratory dynamics, was applied to the data in order to mimic a pseudo real-time scenario.Main results.We were able to achieve high balanced accuracy (BA) values over the whole range of temporal windowing duration. We identified 500 ms as the optimal temporal windowing duration for both BA values and computational execution time processing, achieving more than 86% for BA and a computational execution time of only ∼6.8 ms. Our algorithm outperformed in terms of BA and computational execution time a state of the art decoding algorithm tested on the same dataset (Valloneet al2021J. Neural Eng.180460a2). We found that RF outperformed other machine learning models such as support vector machines, K-nearest neighbors, and multi-layer perceptrons.Significance.Our approach could represent an important step towards the implementation of a closed-loop neuromodulation protocol relying on a single intraneural interface able to perform real-time decoding tasks and selective modulation of the VN.
A lightweight learning-based decoding algorithm for intraneural vagus nerve activity classification in pigs
Pollina, Leonardo;Vallone, Fabio;Ottaviani, Matteo M;Strauss, Ivo;Carlucci, Lucia;Recchia, Fabio A;Micera, Silvestro;Moccia, Sara
2022-01-01
Abstract
Objective.Bioelectronic medicine is an emerging field that aims at developing closed-loop neuromodulation protocols for the autonomic nervous system (ANS) to treat a wide range of disorders. When designing a closed-loop protocol for real time modulation of the ANS, the computational execution time and the memory and power demands of the decoding step are important factors to consider. In the context of cardiovascular and respiratory diseases, these requirements may partially explain why closed-loop clinical neuromodulation protocols that adapt stimulation parameters on patient's clinical characteristics are currently missing.Approach.Here, we developed a lightweight learning-based decoder for the classification of cardiovascular and respiratory functional challenges from neural signals acquired through intraneural electrodes implanted in the cervical vagus nerve (VN) of five anaesthetized pigs. Our algorithm is based on signal temporal windowing, nine handcrafted features, and random forest (RF) model for classification. Temporal windowing ranging from 50 ms to 1 s, compatible in duration with cardio-respiratory dynamics, was applied to the data in order to mimic a pseudo real-time scenario.Main results.We were able to achieve high balanced accuracy (BA) values over the whole range of temporal windowing duration. We identified 500 ms as the optimal temporal windowing duration for both BA values and computational execution time processing, achieving more than 86% for BA and a computational execution time of only ∼6.8 ms. Our algorithm outperformed in terms of BA and computational execution time a state of the art decoding algorithm tested on the same dataset (Valloneet al2021J. Neural Eng.180460a2). We found that RF outperformed other machine learning models such as support vector machines, K-nearest neighbors, and multi-layer perceptrons.Significance.Our approach could represent an important step towards the implementation of a closed-loop neuromodulation protocol relying on a single intraneural interface able to perform real-time decoding tasks and selective modulation of the VN.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.