The minimum toe clearance (MTC) results from the coordination of all bilateral lower limb body segments, i.e., a redundant kinematic chain. We tested the hypothesis that repeated exposure to trip-like perturbations induces a more effective covariation of limb segments during steady walking, in accordance with the uncontrolled manifold (UCM) theory, to minimize the MTC across strides. Twelve healthy young adults (mean age 26.2 ± 3.3 years) were enrolled. The experimental protocol consisted of three identical trials, each involving three phases carried outin succession: steady walking (baseline), managing trip-like perturbations, and steady walking (post-perturbation). Lower limb kinematics collected during both steady walking phases wereanalyzed in the framework of the UCM theory to test the hypothesis that the reduced MTC variability following the perturbation can occur, in conjunction with more effective organization of the redundant lower limb segments. Results revealed that, after the perturbation, the synergy underlying lower limb coordination becomes stronger. Accordingly, the short-term effects of the repeated exposure to perturbations modify the organization of the redundant lower limb-related movements. In addition, results confirm that the UCM theory is a promising tool for exploring the effectiveness of interventions aimed at purposely modifying motor behaviors.

Short-term effects of the repeated exposure to trip-like perturbations on inter-segment coordination during walking: An ucm analysis

Monaco V.
;
2021-01-01

Abstract

The minimum toe clearance (MTC) results from the coordination of all bilateral lower limb body segments, i.e., a redundant kinematic chain. We tested the hypothesis that repeated exposure to trip-like perturbations induces a more effective covariation of limb segments during steady walking, in accordance with the uncontrolled manifold (UCM) theory, to minimize the MTC across strides. Twelve healthy young adults (mean age 26.2 ± 3.3 years) were enrolled. The experimental protocol consisted of three identical trials, each involving three phases carried outin succession: steady walking (baseline), managing trip-like perturbations, and steady walking (post-perturbation). Lower limb kinematics collected during both steady walking phases wereanalyzed in the framework of the UCM theory to test the hypothesis that the reduced MTC variability following the perturbation can occur, in conjunction with more effective organization of the redundant lower limb segments. Results revealed that, after the perturbation, the synergy underlying lower limb coordination becomes stronger. Accordingly, the short-term effects of the repeated exposure to perturbations modify the organization of the redundant lower limb-related movements. In addition, results confirm that the UCM theory is a promising tool for exploring the effectiveness of interventions aimed at purposely modifying motor behaviors.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/541220
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
social impact