Reconfigurable linear optical processors can be used to perform linear transformations and are instrumental in effectively computing matrix-vector multiplications required in each neural network layer. In this paper, we characterize and compare two thermally tuned photonic integrated processors realized in silicon-on-insulator and silicon nitride platforms suited for extracting feature maps in convolutional neural networks. The reduction in bit resolution when crossing the processor is mainly due to optical losses, in the range 2.3-3.3 for the silicon-on-insulator chip and in the range 1.3-2.4 for the silicon nitride chip. However, the lower extinction ratio of Mach-Zehnder elements in the latter platform limits their expressivity (i.e., the capacity to implement any transformation) to 75%, compared to 97% of the former. Finally, the silicon-on-insulator processor outperforms the silicon nitride one in terms of footprint and energy efficiency.

Photonic Integrated Reconfigurable Linear Processors as Neural Network Accelerators

De Marinis, Lorenzo;Cococcioni, Marco;Liboiron-Ladouceur, Odile;Contestabile, Giampiero;Castoldi, Piero;Andriolli, Nicola
2021-01-01

Abstract

Reconfigurable linear optical processors can be used to perform linear transformations and are instrumental in effectively computing matrix-vector multiplications required in each neural network layer. In this paper, we characterize and compare two thermally tuned photonic integrated processors realized in silicon-on-insulator and silicon nitride platforms suited for extracting feature maps in convolutional neural networks. The reduction in bit resolution when crossing the processor is mainly due to optical losses, in the range 2.3-3.3 for the silicon-on-insulator chip and in the range 1.3-2.4 for the silicon nitride chip. However, the lower extinction ratio of Mach-Zehnder elements in the latter platform limits their expressivity (i.e., the capacity to implement any transformation) to 75%, compared to 97% of the former. Finally, the silicon-on-insulator processor outperforms the silicon nitride one in terms of footprint and energy efficiency.
2021
File in questo prodotto:
File Dimensione Formato  
Appl_Sciences_Invited.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 2.53 MB
Formato Adobe PDF
2.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/538996
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
social impact