Within the implementation of the Industry 4.0 paradigm in the steel sector, robots can play a relevant role in improving health and safety conditions at the workplace, by overtaking cumbersome, repetitive and risky operations. However, the implementation of robotics solutions in this particular sector is hampered by harsh operating conditions and by particular features of many procedures, which require a combination of force and sensitivity. Human–robot cooperation is a viable solution to overcome existing barriers, by synergistically combining human and robot abilities in the sense of a human-centered Industry 5.0. In this sense, robotics solution should be designed in a way to integrate and meet the end-users’ demands in a common development process for successfully implementation and widely acceptance. The paper presents the outcomes of the field evaluation of a robotic workstation, which was designed for a complex maintenance operation that is daily performed in the steel shop. The system derives from a co-creation process, where workers were involved since the beginning in the design process, according to the paradigm of social innovation combining technological and social development. Therefore, the evaluation aimed at assessing both system reliability and end-users’ satisfaction. The results show that the human-centered robotic workstations are successful in reducing cumbersome operations and improving workers’ health and safety conditions, and that this fact is clearly perceived by system users and developers.

Human-centered robotic development in the steel shop: Improving health, safety and digital skills at the workplace

Colla V.
;
Matino R.;
2021-01-01

Abstract

Within the implementation of the Industry 4.0 paradigm in the steel sector, robots can play a relevant role in improving health and safety conditions at the workplace, by overtaking cumbersome, repetitive and risky operations. However, the implementation of robotics solutions in this particular sector is hampered by harsh operating conditions and by particular features of many procedures, which require a combination of force and sensitivity. Human–robot cooperation is a viable solution to overcome existing barriers, by synergistically combining human and robot abilities in the sense of a human-centered Industry 5.0. In this sense, robotics solution should be designed in a way to integrate and meet the end-users’ demands in a common development process for successfully implementation and widely acceptance. The paper presents the outcomes of the field evaluation of a robotic workstation, which was designed for a complex maintenance operation that is daily performed in the steel shop. The system derives from a co-creation process, where workers were involved since the beginning in the design process, according to the paradigm of social innovation combining technological and social development. Therefore, the evaluation aimed at assessing both system reliability and end-users’ satisfaction. The results show that the human-centered robotic workstations are successful in reducing cumbersome operations and improving workers’ health and safety conditions, and that this fact is clearly perceived by system users and developers.
2021
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/538230
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
social impact