The use of innovative methodologies, such as Surgical Data Science (SDS), based on artificial intelligence (AI) could prove to be useful for extracting knowledge from clinical data overcoming limitations inherent in medical registries analysis. The aim of the study is to verify if the application of an AI analysis to our database could develop a model able to predict cardiopulmonary complications in patients submitted to lung resection.

A Machine Learning Approach for Postoperative Outcome Prediction: Surgical Data Science Application in a Thoracic Surgery Setting

Moccia, Sara;
2021-01-01

Abstract

The use of innovative methodologies, such as Surgical Data Science (SDS), based on artificial intelligence (AI) could prove to be useful for extracting knowledge from clinical data overcoming limitations inherent in medical registries analysis. The aim of the study is to verify if the application of an AI analysis to our database could develop a model able to predict cardiopulmonary complications in patients submitted to lung resection.
2021
File in questo prodotto:
File Dimensione Formato  
Salati2021_Article_AMachineLearningApproachForPos.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/536691
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
social impact