Background: 3D reconstruction algorithms are of fundamental importance for augmented reality applications in computer-assisted surgery. However, few datasets of endoscopic stereo images with associated 3D surface references are currently openly available, preventing the proper validation of such algorithms. This work presents a new and rich dataset of endoscopic stereo images (EndoAbS dataset). Methods: The dataset includes (i) endoscopic stereo images of phantom abdominal organs, (ii) a 3D organ surface reference (RF) generated with a laser scanner and (iii) camera calibration parameters. A detailed description of the generation of the phantom and the camera–laser calibration method is also provided. Results: An estimation of the overall error in creation of the dataset is reported (camera–laser calibration error 0.43 mm) and the performance of a 3D reconstruction algorithm is evaluated using EndoAbS, resulting in an accuracy error in accordance with state-of-the-art results (<2 mm). Conclusions: The EndoAbS dataset contributes to an increase the number and variety of openly available datasets of surgical stereo images, including a highly accurate RF and different surgical conditions.

EndoAbS dataset: Endoscopic abdominal stereo image dataset for benchmarking 3D stereo reconstruction algorithms

Moccia S.;
2018-01-01

Abstract

Background: 3D reconstruction algorithms are of fundamental importance for augmented reality applications in computer-assisted surgery. However, few datasets of endoscopic stereo images with associated 3D surface references are currently openly available, preventing the proper validation of such algorithms. This work presents a new and rich dataset of endoscopic stereo images (EndoAbS dataset). Methods: The dataset includes (i) endoscopic stereo images of phantom abdominal organs, (ii) a 3D organ surface reference (RF) generated with a laser scanner and (iii) camera calibration parameters. A detailed description of the generation of the phantom and the camera–laser calibration method is also provided. Results: An estimation of the overall error in creation of the dataset is reported (camera–laser calibration error 0.43 mm) and the performance of a 3D reconstruction algorithm is evaluated using EndoAbS, resulting in an accuracy error in accordance with state-of-the-art results (<2 mm). Conclusions: The EndoAbS dataset contributes to an increase the number and variety of openly available datasets of surgical stereo images, including a highly accurate RF and different surgical conditions.
2018
File in questo prodotto:
File Dimensione Formato  
endo_2018.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.26 MB
Formato Adobe PDF
1.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/536505
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
social impact