Background and Objectives: Measuring head-circumference (HC) length from ultrasound (US) images is a crucial clinical task to assess fetus growth. To lower intra- and inter-operator variability in HC length measuring, several computer-assisted solutions have been proposed in the years. Recently, a large number of deep-learning approaches is addressing the problem of HC delineation through the segmentation of the whole fetal head via convolutional neural networks (CNNs). Since the task is a edge-delineation problem, we propose a different strategy based on regression CNNs. Methods: The proposed framework consists of a region-proposal CNN for head localization and centering, and a regression CNN for accurately delineate the HC. The first CNN is trained exploiting transfer learning, while we propose a training strategy for the regression CNN based on distance fields. Results: The framework was tested on the HC18 Challenge dataset, which consists of 999 training and 335 testing images. A mean absolute difference of 1.90 ( ± 1.76) mm and a Dice similarity coefficient of 97.75 ( ± 1.32) % were achieved, overcoming approaches in the literature. Conclusions: The experimental results showed the effectiveness of the proposed framework, proving its potential in supporting clinicians during the clinical practice.
A regression framework to head-circumference delineation from US fetal images
Moccia S.;
2021-01-01
Abstract
Background and Objectives: Measuring head-circumference (HC) length from ultrasound (US) images is a crucial clinical task to assess fetus growth. To lower intra- and inter-operator variability in HC length measuring, several computer-assisted solutions have been proposed in the years. Recently, a large number of deep-learning approaches is addressing the problem of HC delineation through the segmentation of the whole fetal head via convolutional neural networks (CNNs). Since the task is a edge-delineation problem, we propose a different strategy based on regression CNNs. Methods: The proposed framework consists of a region-proposal CNN for head localization and centering, and a regression CNN for accurately delineate the HC. The first CNN is trained exploiting transfer learning, while we propose a training strategy for the regression CNN based on distance fields. Results: The framework was tested on the HC18 Challenge dataset, which consists of 999 training and 335 testing images. A mean absolute difference of 1.90 ( ± 1.76) mm and a Dice similarity coefficient of 97.75 ( ± 1.32) % were achieved, overcoming approaches in the literature. Conclusions: The experimental results showed the effectiveness of the proposed framework, proving its potential in supporting clinicians during the clinical practice.File | Dimensione | Formato | |
---|---|---|---|
cmpb-2021.pdf
accesso aperto
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.