The standard solution for short-haul fiber-optic communications is to deploy noncoherent systems, i.e., to modulate and detect only the light intensity. In such systems, the signal is corrupted with optical noise from amplifiers and with thermal (electrical) noise. The capacity of noncoherent optical links has been studied extensively in the presence of either optical noise or thermal noise. In this paper, for the first time, we characterize the capacity under an average power constraint with both noise sources by establishing upper and lower bounds. In the two extreme cases of zero optical noise or zero thermal noise, we assess our bounds against some well-known results in the literature; improvements in both cases are observed. Next, for amplified fiber-optic systems, we study the trade-off between boosting signal energy (mitigating the effects of thermal noise) and adding optical noise. For a wide spectrum of system parameters and received power levels, we determine the optimal amplification gain. While mostly either no amplification or high-gain amplification is optimal, the best performance is for some parameter intervals achieved at finite gains.

When to Use Optical Amplification in Noncoherent Transmission: An Information-Theoretic Approach

Secondini M.;
2020-01-01

Abstract

The standard solution for short-haul fiber-optic communications is to deploy noncoherent systems, i.e., to modulate and detect only the light intensity. In such systems, the signal is corrupted with optical noise from amplifiers and with thermal (electrical) noise. The capacity of noncoherent optical links has been studied extensively in the presence of either optical noise or thermal noise. In this paper, for the first time, we characterize the capacity under an average power constraint with both noise sources by establishing upper and lower bounds. In the two extreme cases of zero optical noise or zero thermal noise, we assess our bounds against some well-known results in the literature; improvements in both cases are observed. Next, for amplified fiber-optic systems, we study the trade-off between boosting signal energy (mitigating the effects of thermal noise) and adding optical noise. For a wide spectrum of system parameters and received power levels, we determine the optimal amplification gain. While mostly either no amplification or high-gain amplification is optimal, the best performance is for some parameter intervals achieved at finite gains.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/536054
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
social impact