In a seminal paper published in 1951, Taylor studied the interactions between a viscous fluid and an immersed flat sheet which is subjected to a travelling wave of transversal displacement. The net reaction of the fluid over the sheet turned out to be a force in the direction of the wave phase-speed. This effect is a key mechanism for the swimming of micro-organisms in viscous fluids. Here, we study the interaction between a viscous fluid and a special class of nonlinear morphing shells. We consider pre-stressed shells showing a onedimensional set of neutrally stable equilibria with almost cylindrical configurations. Their shape can be effectively controlled through embedded active materials, generating a large-amplitude shape-wave associated with precession of the axis of maximal curvature. We show that this shape-wave constitutes the rotational analogue of a Taylor's sheet, where the translational swimming velocity is replaced by an angular velocity. Despite the net force acting on the shell vanishes, the resultant torque does not. A similar mechanism can be used to manoeuver in viscous fluids.
A neutrally stable shell in a Stokes flow: A rotational Taylor's sheet
De Simone A.;
2019-01-01
Abstract
In a seminal paper published in 1951, Taylor studied the interactions between a viscous fluid and an immersed flat sheet which is subjected to a travelling wave of transversal displacement. The net reaction of the fluid over the sheet turned out to be a force in the direction of the wave phase-speed. This effect is a key mechanism for the swimming of micro-organisms in viscous fluids. Here, we study the interaction between a viscous fluid and a special class of nonlinear morphing shells. We consider pre-stressed shells showing a onedimensional set of neutrally stable equilibria with almost cylindrical configurations. Their shape can be effectively controlled through embedded active materials, generating a large-amplitude shape-wave associated with precession of the axis of maximal curvature. We show that this shape-wave constitutes the rotational analogue of a Taylor's sheet, where the translational swimming velocity is replaced by an angular velocity. Despite the net force acting on the shell vanishes, the resultant torque does not. A similar mechanism can be used to manoeuver in viscous fluids.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.