We propose a novel procedure, built within a Generalized Method of Moments framework, which exploits unpaired observations (singletons) to increase the efficiency of longitudinal fixed effect estimates. The approach allows increasing estimation efficiency, while properly tackling the bias due to unobserved time-invariant characteristics. We assess its properties by means of Monte Carlo simulations, and apply it to a traditional Total Factor Productivity regression, showing efficiency gains of approximately 8-9 percent.

Exploiting information from singletons in panel data analysis: A GMM approach

Laura Magazzini
;
2019-01-01

Abstract

We propose a novel procedure, built within a Generalized Method of Moments framework, which exploits unpaired observations (singletons) to increase the efficiency of longitudinal fixed effect estimates. The approach allows increasing estimation efficiency, while properly tackling the bias due to unobserved time-invariant characteristics. We assess its properties by means of Monte Carlo simulations, and apply it to a traditional Total Factor Productivity regression, showing efficiency gains of approximately 8-9 percent.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/535265
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
social impact