Context: The time-to-glucose-peak following the oral glucose tolerance test (OGTT) is a highly reproducible marker for diabetes risk. In obese youths, we lack evidence for the mechanisms underlying the effects of the TCF7L2 rs7903146 variant on glucose peak. Methods: We analyzed the metabolic phenotype and the genotype for the TCF7L2 rs7903146 in 630 obese youths with normal (NGT) and impaired (IGT) glucose tolerance. Participants underwent a 3-hour, 9-point OGTT to estimate, using the oral minimal model, the disposition index (DI), the static (φstatic) and dynamic (φdynamic) components β-cell responsiveness and insulin sensitivity (SI). In a subgroup (n = 241) longitudinally followed for 2 years, we estimated the effect of time-to-glucose-peak on glucose tolerance change. Results: Participants were grouped into early (<30 minutes) and late (≥30 minutes) glucose peakers. A delayed glucose peak was featured by a decline in φstatic (P < .001) in the absence of a difference in φdynamic. The prevalence of T-risk allele for TCF7L2 rs7903146 variant significantly increased in the late peak group. A lower DI was correlated with higher glucose concentration at 1 and 2 hours, whereas SI was inversely associated with 1-hour glucose. Glucose peak <30 minutes was protective toward worsening of glucose tolerance overtime (odds ratio 0.35 [0.15-0.82]; P = .015), with no subjects progressing to NGT or persisting IGT, in contrast to the 40% of progressor in those with late glucose peak. Conclusion: The prevalence of T-risk allele for the TCF7L2 rs7903146 prevailed in the late time-to-glucose peak group, which in turn is associated with impaired β-cell responsiveness to glucose (φ), thereby predisposing to prediabetes and diabetes in obese youths.

Metabolic and Genetic Determinants of Glucose Shape After Oral Challenge in Obese Youths: A Longitudinal Study

Tricò, Domenico;
2020-01-01

Abstract

Context: The time-to-glucose-peak following the oral glucose tolerance test (OGTT) is a highly reproducible marker for diabetes risk. In obese youths, we lack evidence for the mechanisms underlying the effects of the TCF7L2 rs7903146 variant on glucose peak. Methods: We analyzed the metabolic phenotype and the genotype for the TCF7L2 rs7903146 in 630 obese youths with normal (NGT) and impaired (IGT) glucose tolerance. Participants underwent a 3-hour, 9-point OGTT to estimate, using the oral minimal model, the disposition index (DI), the static (φstatic) and dynamic (φdynamic) components β-cell responsiveness and insulin sensitivity (SI). In a subgroup (n = 241) longitudinally followed for 2 years, we estimated the effect of time-to-glucose-peak on glucose tolerance change. Results: Participants were grouped into early (<30 minutes) and late (≥30 minutes) glucose peakers. A delayed glucose peak was featured by a decline in φstatic (P < .001) in the absence of a difference in φdynamic. The prevalence of T-risk allele for TCF7L2 rs7903146 variant significantly increased in the late peak group. A lower DI was correlated with higher glucose concentration at 1 and 2 hours, whereas SI was inversely associated with 1-hour glucose. Glucose peak <30 minutes was protective toward worsening of glucose tolerance overtime (odds ratio 0.35 [0.15-0.82]; P = .015), with no subjects progressing to NGT or persisting IGT, in contrast to the 40% of progressor in those with late glucose peak. Conclusion: The prevalence of T-risk allele for the TCF7L2 rs7903146 prevailed in the late time-to-glucose peak group, which in turn is associated with impaired β-cell responsiveness to glucose (φ), thereby predisposing to prediabetes and diabetes in obese youths.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/532136
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
social impact