We experimentally demonstrate anti-colliding pulse mode-locking (ACPML) in an integrated semiconductor laser. The device geometry consists of a gain section and a saturable absorber (SA) section located immediately next to one of the cavity facets. After depositing a low-reflection coating on the SA facet and a high-reflection coating on the gain section facet, the threshold is unchanged, while the modulation of the SA is increased. The data presented here confirm that the ACPML configuration improves the peak output power of the pulses, reduces the amplitude fluctuation and timing jitter, and expands the biasing parameter range over which the stable mode-locking operation occurs.
Experimental investigation of anti-colliding pulse mode-locked semiconductor lasers
Sorel M.
2015-01-01
Abstract
We experimentally demonstrate anti-colliding pulse mode-locking (ACPML) in an integrated semiconductor laser. The device geometry consists of a gain section and a saturable absorber (SA) section located immediately next to one of the cavity facets. After depositing a low-reflection coating on the SA facet and a high-reflection coating on the gain section facet, the threshold is unchanged, while the modulation of the SA is increased. The data presented here confirm that the ACPML configuration improves the peak output power of the pulses, reduces the amplitude fluctuation and timing jitter, and expands the biasing parameter range over which the stable mode-locking operation occurs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.