This work presents a novel self-regulated toroidal continuously variable transmission (ART-CVT) that features a passive control of the speed ratio, achieved with no need for supplementary actuation system. The proposed transmission system is based on a full-toroidal CVT topology which combines a specially shaped geometry of the conjugate profiles with a pre-load system to create a correlation between the speed ratio and the input torque. Such a solution is conceived to reduce the complexity that is usually associated with active regulated systems and it is envisaged to be applicable to low-power/low-cost systems such as small wind turbines, powered-two-wheelers, or bicycles. We illustrate a simplified mathematical model that is able to describe the response of the proposed ART-CVT in quasi-static steady-state operational conditions. Additionally, we propose a case-study in a realistic scenario: a design for an ART-CVT that matches the requirements of a low-power wind turbine coupled with a synchronous generator directly connected to the grid without additional power converters. The achieved results show that an ART-CVT is able to reach working conditions close to the maximum theoretical aerodynamic performance without any active regulation.

A passively regulated full-toroidal continuously variable transmission

Milazzo M.;Moretti G.;Oddo C. M.;Stefanini C.;Fontana M.
2019-01-01

Abstract

This work presents a novel self-regulated toroidal continuously variable transmission (ART-CVT) that features a passive control of the speed ratio, achieved with no need for supplementary actuation system. The proposed transmission system is based on a full-toroidal CVT topology which combines a specially shaped geometry of the conjugate profiles with a pre-load system to create a correlation between the speed ratio and the input torque. Such a solution is conceived to reduce the complexity that is usually associated with active regulated systems and it is envisaged to be applicable to low-power/low-cost systems such as small wind turbines, powered-two-wheelers, or bicycles. We illustrate a simplified mathematical model that is able to describe the response of the proposed ART-CVT in quasi-static steady-state operational conditions. Additionally, we propose a case-study in a realistic scenario: a design for an ART-CVT that matches the requirements of a low-power wind turbine coupled with a synchronous generator directly connected to the grid without additional power converters. The achieved results show that an ART-CVT is able to reach working conditions close to the maximum theoretical aerodynamic performance without any active regulation.
2019
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/531466
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
social impact