A nanotechnology-based approach for the inhibition of breast cancer cell proliferation is proposed. The innovative solution consists in a platform based on biocompatible piezoelectric nanoparticles able to target and remotely stimulate HER2-positive breast cancer cells. The anti-proliferative effects of the ultrasound-driven piezoelectric nanoparticle-assisted stimulation significantly reduced the proliferation by inducing the cell cycle arrest. Similarly to a low-intensity alternating electric field, chronic piezoelectric stimulation resulted able to inhibit cancer cell proliferation by upregulating the expression of the gene encoding Kir3.2 inward rectifier potassium channels, by interfering on Ca2+homeostasis, and by affecting the organization of mitotic spindles during mitosis. The proposed platform, even if specific for HER2-positive cells, shows huge potential and versatility for the treatment of different type of cancers.

Ultrasound-Activated Piezoelectric Nanoparticles Inhibit Proliferation of Breast Cancer Cells

Marino Attilio;Battaglini Matteo;De Pasquale Daniele;Ciofani Gianni
2018-01-01

Abstract

A nanotechnology-based approach for the inhibition of breast cancer cell proliferation is proposed. The innovative solution consists in a platform based on biocompatible piezoelectric nanoparticles able to target and remotely stimulate HER2-positive breast cancer cells. The anti-proliferative effects of the ultrasound-driven piezoelectric nanoparticle-assisted stimulation significantly reduced the proliferation by inducing the cell cycle arrest. Similarly to a low-intensity alternating electric field, chronic piezoelectric stimulation resulted able to inhibit cancer cell proliferation by upregulating the expression of the gene encoding Kir3.2 inward rectifier potassium channels, by interfering on Ca2+homeostasis, and by affecting the organization of mitotic spindles during mitosis. The proposed platform, even if specific for HER2-positive cells, shows huge potential and versatility for the treatment of different type of cancers.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/530638
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 78
social impact