We demonstrate a Distributed Acoustic Sensor (DAS) based on Ultra-Weak Fiber Bragg Gratings (UWFBGs) using a scalable homodyne demodulation in direct detection. We show that a distributed interferometric system using delay and mixing of backscattering from consecutive identical gratings can be combined with a Phase-Generated Carrier Differentiate and Cross-Multiply (PGC-DCM) demodulation algorithm to perform dynamic measurements with high SNR, employing a simple narrowband laser and a pin photodiode. The proposed homodyne demodulation technique is suitable for real-time monitoring using distributed measurements, as it does not require computationally costly phase unwrapping common in conventional schemes and is robust against detrimental harmonic distortions, while not requiring additional mechanisms to handle division-by-zero operations. The demodulation scheme is also scalable, as it involves symmetric ordinary differentiation and integration operations suitable for processing with FPGA-based or analogue systems which, thanks to readily realizable schemes for implementing fractional order calculus, are also candidates for small-scale integration. We experimentally demonstrate the effectiveness of the technique by monitoring the dynamic response of a generic 2.5 kHz vibration applied to a PZT placed at the end of a sensing fiber comprised of a 1 km array of 200 UWFBGs each with a reflectivity of ~-43 dB written at a spacing of 5 m, with an SNR of ~34.52 dB.

Dynamic phase extraction in high-SNR DAS based on UWFBGs without phase unwrapping using scalable homodyne demodulation in direct detection

Muanenda, Yonas;Faralli, Stefano;Oton, Claudio J.;Di Pasquale, Fabrizio
2019-01-01

Abstract

We demonstrate a Distributed Acoustic Sensor (DAS) based on Ultra-Weak Fiber Bragg Gratings (UWFBGs) using a scalable homodyne demodulation in direct detection. We show that a distributed interferometric system using delay and mixing of backscattering from consecutive identical gratings can be combined with a Phase-Generated Carrier Differentiate and Cross-Multiply (PGC-DCM) demodulation algorithm to perform dynamic measurements with high SNR, employing a simple narrowband laser and a pin photodiode. The proposed homodyne demodulation technique is suitable for real-time monitoring using distributed measurements, as it does not require computationally costly phase unwrapping common in conventional schemes and is robust against detrimental harmonic distortions, while not requiring additional mechanisms to handle division-by-zero operations. The demodulation scheme is also scalable, as it involves symmetric ordinary differentiation and integration operations suitable for processing with FPGA-based or analogue systems which, thanks to readily realizable schemes for implementing fractional order calculus, are also candidates for small-scale integration. We experimentally demonstrate the effectiveness of the technique by monitoring the dynamic response of a generic 2.5 kHz vibration applied to a PZT placed at the end of a sensing fiber comprised of a 1 km array of 200 UWFBGs each with a reflectivity of ~-43 dB written at a spacing of 5 m, with an SNR of ~34.52 dB.
2019
File in questo prodotto:
File Dimensione Formato  
OE19 Muanenda Ultraweak FBG DAS.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Non pubblico
Dimensione 3.55 MB
Formato Adobe PDF
3.55 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/528034
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
social impact