Background: Mesangiogenic progenitor cells (MPCs) have shown the ability to differentiate in-vitro toward mesenchymal stromal cells (MSCs) as well as angiogenic potential. MPCs have so far been described in detail as progenitors of the mesodermal lineage and appear to be of great significance in tissue regeneration and in hemopoietic niche regulation. On the contrary, information regarding the MPC angiogenic process is still incomplete and requires further clarification. In particular, genuine MPC angiogenic potential should be confirmed in-vivo. Methods: In the present article, markers and functions associated with angiogenic cells have been dissected. MPCs freshly isolated from human bone marrow have been induced to differentiate into exponentially growing MSCs (P2-MSCs). Cells have been characterized and angiogenesis-related gene expression was evaluated before and after mesengenic differentiation. Moreover, angiogenic potential has been tested by in-vitro and in-vivo functional assays. Results: MPCs showed a distinctive gene expression profile, acetylated-low density lipoprotein uptake, and transendothelial migration capacity. However, mature endothelial markers and functions of endothelial cells, including the ability to form new capillaries, were absent, thus suggesting MPCs to be very immature endothelial progenitors. MPCs showed marked 3D spheroid sprouting activating the related molecular machinery, a clear in-vitro indication of early angiogenesis. Indeed, MPCs applied to chicken chorioallantoic membrane induced and participated in neovessel formation. All of these features were lost in mesengenic terminally differentiated P2-MSCs, showing definite separation of the two differentiation lineages. Conclusion: Our results confirm the bona-fide angiogenic potential of MPCs and suggest that the high variability reported for MSC cultures, responsible for the controversies regarding MSC angiogenic potential, could be correlated to variable percentages of co-isolated MPCs in the different culture conditions so far used.

Human adult mesangiogenic progenitor cells reveal an early angiogenic potential, which is lost after mesengenic differentiation

Panvini, Francesca;
2017-01-01

Abstract

Background: Mesangiogenic progenitor cells (MPCs) have shown the ability to differentiate in-vitro toward mesenchymal stromal cells (MSCs) as well as angiogenic potential. MPCs have so far been described in detail as progenitors of the mesodermal lineage and appear to be of great significance in tissue regeneration and in hemopoietic niche regulation. On the contrary, information regarding the MPC angiogenic process is still incomplete and requires further clarification. In particular, genuine MPC angiogenic potential should be confirmed in-vivo. Methods: In the present article, markers and functions associated with angiogenic cells have been dissected. MPCs freshly isolated from human bone marrow have been induced to differentiate into exponentially growing MSCs (P2-MSCs). Cells have been characterized and angiogenesis-related gene expression was evaluated before and after mesengenic differentiation. Moreover, angiogenic potential has been tested by in-vitro and in-vivo functional assays. Results: MPCs showed a distinctive gene expression profile, acetylated-low density lipoprotein uptake, and transendothelial migration capacity. However, mature endothelial markers and functions of endothelial cells, including the ability to form new capillaries, were absent, thus suggesting MPCs to be very immature endothelial progenitors. MPCs showed marked 3D spheroid sprouting activating the related molecular machinery, a clear in-vitro indication of early angiogenesis. Indeed, MPCs applied to chicken chorioallantoic membrane induced and participated in neovessel formation. All of these features were lost in mesengenic terminally differentiated P2-MSCs, showing definite separation of the two differentiation lineages. Conclusion: Our results confirm the bona-fide angiogenic potential of MPCs and suggest that the high variability reported for MSC cultures, responsible for the controversies regarding MSC angiogenic potential, could be correlated to variable percentages of co-isolated MPCs in the different culture conditions so far used.
2017
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/526772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
social impact