Millions of people worldwide are affected by Parkinson’s disease (PD), which significantly worsens their quality of life. Currently, the diagnosis is based on assessment of motor symptoms, but interest toward non-motor symptoms is increasing, as well. Among them, idiopathic hyposmia (IH) is associated with an increased risk of developing PD in healthy adults. In this work, a wearable inertial device, named SensFoot V2, was used to acquire motor data from 30 healthy subjects, 30 people with IH, and 30 PD patients while performing tasks from the MDS-UPDRS III for lower limb assessment. The most significant and non-correlated extracted parameters were selected in a feature array that can identify differences between the three groups of people. A comparative classification analysis was performed by applying three supervised machine learning algorithms. The system resulted able to distinguish between healthy and patients (specificity and recall equal to 0.967), and the people with IH can be identified as a separate class within a three-group classification (accuracy equal to 0.78). Thus, the system could support the clinician in objective assessment of PD. Further, identification of IH together with changes in motor parameters could be a non-invasive two-step approach to investigate the early onset of PD.

Comparative Motor Pre-clinical Assessment in Parkinson’s Disease Using Supervised Machine Learning Approaches

Rovini, Erika;Moschetti, Alessandra;Esposito, Dario;Cavallo, Filippo
2018-01-01

Abstract

Millions of people worldwide are affected by Parkinson’s disease (PD), which significantly worsens their quality of life. Currently, the diagnosis is based on assessment of motor symptoms, but interest toward non-motor symptoms is increasing, as well. Among them, idiopathic hyposmia (IH) is associated with an increased risk of developing PD in healthy adults. In this work, a wearable inertial device, named SensFoot V2, was used to acquire motor data from 30 healthy subjects, 30 people with IH, and 30 PD patients while performing tasks from the MDS-UPDRS III for lower limb assessment. The most significant and non-correlated extracted parameters were selected in a feature array that can identify differences between the three groups of people. A comparative classification analysis was performed by applying three supervised machine learning algorithms. The system resulted able to distinguish between healthy and patients (specificity and recall equal to 0.967), and the people with IH can be identified as a separate class within a three-group classification (accuracy equal to 0.78). Thus, the system could support the clinician in objective assessment of PD. Further, identification of IH together with changes in motor parameters could be a non-invasive two-step approach to investigate the early onset of PD.
2018
File in questo prodotto:
File Dimensione Formato  
IP040 - Comparative Motor Pre-clinical.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Dominio pubblico
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/525950
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
social impact