Efficiently calibrating agent-based models (ABMs) to real data is an open challenge. This paper explicitly tackles parameter space exploration and calibration of ABMs by combining machine-learning and intelligent iterative sampling. The proposed approach “learns” a fast surrogate meta-model using a limited number of ABM evaluations and approximates the nonlinear relationship between ABM inputs (initial conditions and parameters) and outputs. Performance is evaluated on the Brock and Hommes (1998) asset pricing model and the “Islands” endogenous growth model Fagiolo and Dosi (2003). Results demonstrate that machine learning surrogates obtained using the proposed iterative learning procedure provide a quite accurate proxy of the true model and dramatically reduce the computation time necessary for large scale parameter space exploration and calibration.
Agent-based model calibration using machine learning surrogates
Lamperti, Francesco
;Roventini, Andrea;SANI, Amir
2018-01-01
Abstract
Efficiently calibrating agent-based models (ABMs) to real data is an open challenge. This paper explicitly tackles parameter space exploration and calibration of ABMs by combining machine-learning and intelligent iterative sampling. The proposed approach “learns” a fast surrogate meta-model using a limited number of ABM evaluations and approximates the nonlinear relationship between ABM inputs (initial conditions and parameters) and outputs. Performance is evaluated on the Brock and Hommes (1998) asset pricing model and the “Islands” endogenous growth model Fagiolo and Dosi (2003). Results demonstrate that machine learning surrogates obtained using the proposed iterative learning procedure provide a quite accurate proxy of the true model and dramatically reduce the computation time necessary for large scale parameter space exploration and calibration.File | Dimensione | Formato | |
---|---|---|---|
LRS 18 - Machine Learning.pdf
solo utenti autorizzati
Descrizione: paper
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
Licenza non conosciuta
Dimensione
2.31 MB
Formato
Adobe PDF
|
2.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.