Background and Aims: High-cholesterol and high-fat diets alter biochemical composition and anti-oxidant properties of high-density lipoproteins (HDL) in animals. Whether this occurs in humans is unknown. Therefore, we examined the effect of a short-term elevation in dietary cholesterol and fat intake on HDL composition in healthy subjects. Methods and Results: In a randomized, crossover clinical trial, 14 healthy young volunteers followed a 14-day low-cholesterol/low-fat diet (LChF) and a 14-day isocaloric high-cholesterol/high-fat diet (HChF) in a random order. After each diet, we measured HDL concentrations of hydroxyeicosatetraenoic acids (HETE), hydroxyoctadecadienoic acids (HODE), and haptoglobin, as well as serum amyloid A (SAA) and paroxonase-1 activity (PON-1). HDL concentrations of 15-HETE (+254%, p = 0.002), 5-HETE (+116%, p = 0.004), 13-HODE (+102%, p = 0.049), and SAA levels (+75%, p = 0.007) were significantly higher after the HChF than after the LChF. Furthermore, haptoglobin was marginally increased (+32%, p = 0.091) while PON-1 activity was unaffected (−16%, p = 0.366) by the HChF. Conclusion: In healthy subjects, a short-term elevation in dietary cholesterol and fat intake increases HDL lipid hydroperoxide content (15-HETE, 5-HETE, 13-HODE) and SAA levels, which are key features of dysfunctional HDL. This is the first study showing that a physiologic manipulation of dietary cholesterol and fat intake affects HDL lipidome and proteome in healthy subjects independently of weight changes. Clinical Trial Registration: NCT02549144.

A short-term increase in dietary cholesterol and fat intake affects high-density lipoprotein composition in healthy subjects

MORGANTINI, CECILIA;Tricò, D.;
2018-01-01

Abstract

Background and Aims: High-cholesterol and high-fat diets alter biochemical composition and anti-oxidant properties of high-density lipoproteins (HDL) in animals. Whether this occurs in humans is unknown. Therefore, we examined the effect of a short-term elevation in dietary cholesterol and fat intake on HDL composition in healthy subjects. Methods and Results: In a randomized, crossover clinical trial, 14 healthy young volunteers followed a 14-day low-cholesterol/low-fat diet (LChF) and a 14-day isocaloric high-cholesterol/high-fat diet (HChF) in a random order. After each diet, we measured HDL concentrations of hydroxyeicosatetraenoic acids (HETE), hydroxyoctadecadienoic acids (HODE), and haptoglobin, as well as serum amyloid A (SAA) and paroxonase-1 activity (PON-1). HDL concentrations of 15-HETE (+254%, p = 0.002), 5-HETE (+116%, p = 0.004), 13-HODE (+102%, p = 0.049), and SAA levels (+75%, p = 0.007) were significantly higher after the HChF than after the LChF. Furthermore, haptoglobin was marginally increased (+32%, p = 0.091) while PON-1 activity was unaffected (−16%, p = 0.366) by the HChF. Conclusion: In healthy subjects, a short-term elevation in dietary cholesterol and fat intake increases HDL lipid hydroperoxide content (15-HETE, 5-HETE, 13-HODE) and SAA levels, which are key features of dysfunctional HDL. This is the first study showing that a physiologic manipulation of dietary cholesterol and fat intake affects HDL lipidome and proteome in healthy subjects independently of weight changes. Clinical Trial Registration: NCT02549144.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/524804
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
social impact