In this work, we study the performance of polarization division multiplexing nonlinear inverse synthesis transmission schemes for fiber-optic communications, expected to have reduced nonlinearity impact. Our technique exploits the integrability of the Manakov equation—the master model for dual-polarization signal propagation in a single mode fiber—and employs nonlinear Fourier transform (NFT) based signal processing. First, we generalize some algorithms for the NFT computation to the two- and multicomponent case. Then, we demonstrate that modulating information on both polarizations doubles the channel information rate with a negligible performance degradation. Moreover, we introduce a novel dual-polarization transmission scheme with reduced complexity which separately processes each polarization component and can also provide a performance improvement in some practical scenarios.
Polarization-multiplexed nonlinear inverse synthesis with standard and reduced-complexity NFT processing
Stella Civelli
;Marco Secondini;
2018-01-01
Abstract
In this work, we study the performance of polarization division multiplexing nonlinear inverse synthesis transmission schemes for fiber-optic communications, expected to have reduced nonlinearity impact. Our technique exploits the integrability of the Manakov equation—the master model for dual-polarization signal propagation in a single mode fiber—and employs nonlinear Fourier transform (NFT) based signal processing. First, we generalize some algorithms for the NFT computation to the two- and multicomponent case. Then, we demonstrate that modulating information on both polarizations doubles the channel information rate with a negligible performance degradation. Moreover, we introduce a novel dual-polarization transmission scheme with reduced complexity which separately processes each polarization component and can also provide a performance improvement in some practical scenarios.File | Dimensione | Formato | |
---|---|---|---|
oe-26-13-17360(7).pdf
accesso aperto
Licenza:
Creative commons (selezionare)
Dimensione
3.24 MB
Formato
Adobe PDF
|
3.24 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.