Firms grow and decline by relatively lumpy jumps which cannot be accounted by the cumulation of small, atom-less, independent shocks. Rather big episodes of expansion and contraction are relatively frequent. More technically, this is revealed by the fat-tailed distributions of growth rates. This applies across different levels of sectoral disaggregation, across countries, over different historical periods for which there are available data. What determines such property? In Dosi et al. (The footprint of evolutionary processes of learning and selection upon the statistical properties of industrial dynamics. Industrial and corporate change. Oxford University Press, Oxford, 2016) we implemented a simple multi-firm evolutionary simulation model, built upon the coupling of a replicator dynamic and an idiosyncratic learning process, which turns out to be able to robustly reproduce such a stylized fact. Here, we investigate, by means of a Kriging meta-model, how robust such ubiquitousness feature is with regard to a global exploration of the parameters space. The exercise confirms the high level of generality of the results in a statistically robust global sensitivity analysis framework.

On the robustness of the fat-tailed distribution of firm growth rates: a global sensitivity analysis

Dosi, G.
;
Virgillito, M. E.
2018-01-01

Abstract

Firms grow and decline by relatively lumpy jumps which cannot be accounted by the cumulation of small, atom-less, independent shocks. Rather big episodes of expansion and contraction are relatively frequent. More technically, this is revealed by the fat-tailed distributions of growth rates. This applies across different levels of sectoral disaggregation, across countries, over different historical periods for which there are available data. What determines such property? In Dosi et al. (The footprint of evolutionary processes of learning and selection upon the statistical properties of industrial dynamics. Industrial and corporate change. Oxford University Press, Oxford, 2016) we implemented a simple multi-firm evolutionary simulation model, built upon the coupling of a replicator dynamic and an idiosyncratic learning process, which turns out to be able to robustly reproduce such a stylized fact. Here, we investigate, by means of a Kriging meta-model, how robust such ubiquitousness feature is with regard to a global exploration of the parameters space. The exercise confirms the high level of generality of the results in a statistically robust global sensitivity analysis framework.
2018
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/521757
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
social impact